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Abstract A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically-steady state in elastic wave turbu-
lence. The critical wavenumbers which form the division between the weakly and strongly nonlinear spectra agree with the wavenum-
bers where the frequency increments due to the self-interactions are comparable with the linear frequencies.

INTRODUCTION

The wave turbulence statistics is investigated with direct numerical simulations (DNS) of the Föppl–von Kármán equation,
which is the governing equation of the dynamics of the elastic waves propagating in a thin plate. The energy spectrum
predicted by the weak turbulence theory E(k) ∝ k appears in the large-wavenumber region. On the other hand, another
spectrum k−1/3 appears in the small-wavenumber region, where the nonlinearity is relatively strong. Both spectra coexist
in one energy spectrum. (See Fig. 2 below.) In this study, the critical wavenumbers which form the division between the
weakly and strongly nonlinear spectra are estimated by the comparison of the frequency given by the linear dispersion
relation and that due to the self-interactions.

RESULTS

The FvK equation for the Fourier coefficient of the displacement ζk and that of the momentum pk under the periodic
boundary condition is written as follows:

d

dt
pk = − Eh2

12(1− σ2)
k4ζk − E

2

∑
k=k1+k2+k3

|k × k1|2|k2 × k3|2

|k2 + k3|4
ζk1ζk2ζk3 ,

d

dt
ζk =

pk
ρ
, (1)

where E, σ, ρ, and h are the Young’s modulus, the Poisson ratio, the density, and the thickness of an elastic plate,
respectively. The DNS of the elastic wave turbulence in the non-equilibrium statistically steady states where the small-
wavenumber external forces and the large-wavenumber dissipation are added is performed by changing energy levels.
The FvK equation (1) is rewritten for the complex amplitude ak = (ρωkζk + ipk)/

√
2ρωk as

d

dt
ak = −iωkak − iE

8ρ2

∑
k=k1+k2+k3

|k × k1|2|k2 × k3|2

|k2 + k3|4
√
ωkωk1ωk2ωk3

(ak1 + a∗k1
)(ak2 + a∗k2

)(ak3 + a∗k3
), (2)

which means that ak would rotate with the frequency ωk =
√

Eh2

12(1−σ2)ρk
2 in the negative direction in the phase space if

the nonlinear terms were absent. The frequency spectrum |ãk(Ω)|2 is obtained from the time series of ak(t) by the Fourier
transforms. The numerically-obtained nonlinear frequency Ωk for each k is defined such that |ãk(−Ωk)|2 is maximal.
Let us estimate the nonlinear frequencies to evaluate the nonlinearity. Among the nonlinear interactions, the combination
of the wavenumbers including the self-interactions where one of k1, k2 and k3 appearing in Eq. (1) is k is confined to
(k,k1,k2,k3) = (k,k′,k,−k′) or (k,k′,−k′,k). Then, the FvK equation (2) is rewritten as

d

dt
ak = −iωkak − iωs

k(ak + a∗−k) + non-self interactive terms, (3)

where

ωs
k =

E

4ρ2ωk

∑
k′

|k × k′|4

|k − k′|4
|ak′ |2 + |a−k′ |2 + ak′a−k′ + a∗k′a∗−k′

ωk′
=

E

2ρωk

∑
k′

|k × k′|4

|k − k′|4
|ζk′ |2 (4)

is the frequency due to the self-interactions. Equation (3) is rewritten in the following simultaneous equation:

d

dt

(
ak
a∗−k

)
=

(
−i(ωk + ωs

k) −iωs
k

iωs
−k i(ω−k + ωs

−k)

)(
ak
a∗−k

)
+ non-self interaction terms. (5)

Because the self-interactions preserve the inversion symmetry of the system, the frequency due to the self-interactions
satisfies the relation ωs

k = ωs
−k. When ωs

k is assumed to be constant in time, the eigenvalues of the matrix in the right-
hand side of Eq. (5) determine the nonlinear frequency as ωNL

k =
√

ωk(ωk + 2ωs
k) .
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Figure 1. Nonlinear frequency increments normalized by the linear frequencies for three energy levels.
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Figure 2. Energy spectra of three energy levels. The line shows 2V(kc).

Figure 1 shows the nonlinear frequency increments normalized by the linear frequencies. The frequency increments due
to the self-interactions and those evaluated by the frequency spectra are respectively obtained as ωNL

k −ωk. and Ωk−ωk.
The frequency increments due to the self-interactions agree quite well with those evaluated by the frequency spectra in the
low energy and in the large wavenumbers, where the nonlinearity is weak. On the other hand, in the high energy and in the
small wavenumbers, the frequency increments due to the self-interactions overestimate the actual frequency increments.
When the system is isotropic, the spectrum of the displacement ⟨|ζk|2⟩ and the linear potential energy V(k) are related
as ⟨|ζk|2⟩ ≈ 4πV(k)/(ρkω2

k). The weak turbulence theory is violated when the nonlinear frequency is comparable with
the linear frequency. If the critical wavenumber kc is defined as ωNL

kc
− ωkc = ωkc/2, the potential energy at the critical

wavenumber is given, under the assumption of the self-similarity V(k) ∝ k, as follows:

V(kc) =
5

432

Eh4

(1− σ2)2
k3c . (6)

The factor 1/2 results from the approximate upper limit below which the frequency increments due to the self-interactions
agree with those evaluated by the frequency spectra in Fig. 1. Since E(k) ≈ 2V(k) in the weakly nonlinear wavenumbers,
the critical wavenumber kc satisfies E(kc) ≈ 2V(kc). The energy spectra for the three energy levels are shown in
Fig. 2. The line 2V(kc) intersects with the energy spectra at the critical wavenumbers which form the division between
the weakly and strongly nonlinear spectra. It indicates that the critical wavenumbers estimated by the correspondence
ωNL
kc

− ωkc = ωkc/2 successfully mark the transition from the weakly nonlinear turbulence to the strongly nonlinear
turbulence.


