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Abstract We investigate the structure of locally isotropic MHD turbulence by means of exact equations for two-point magnetic
and velocity structure functions. To this end we make use of the calculus of isotropic tensors for MHD turbulence introduced by
Chandrasekhar [1]. A hierarchy of structure function equations is obtained, beginning with the MHD analagon of Kolmogorov’s four-
fifths law of hydrodynamics. The next order equation relates the third- and fourth-order structure functions and is the first order which
provides a direct dependence between the longitudinal and the transverse structure functions based on the dynamics. The obtained
relations for two-dimensional MHD flows are checked by direct numerical simulations.

THE CALCULUS OF ISOTROPIC TENSORS IN MHD TURBULENCE

We consider the MHD equations in the following form
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h + u · ∇h− h · ∇u = λ∇2h, (2)
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We introduce the velocity and magnetic increments

v(x,x′, t) = u(x, t)− u(x′, t) = u− u′ and b(x,x′, t) = h(x, t)− h(x′, t) = h− h′. (4)

and change to relative r = x− x′ and center coordinates X = x+x′

2 .
In contrast to ordinary turbulence, in MHD we have to deal several times with quantities which are not invariant under the
full rotation group. This is due to h being an axial vector which is unchanged under an reflexion, contrary to the true polar
vector u, which changes signs. Quantities which involve an odd number of magnetic increments like the cross helicity

〈vibj〉 = Dvb
i j (r, t) = Dvb(r, t)εijk

rk
r
, (5)

thus lack the reflection symmetry, whereas quantities like 〈vivj〉 or 〈bibj〉 can be written in the usual form

〈vivj〉 = Dvv
i j (r, t) = (Dvv

r r (r, t)−Dvv
t t (r, t))

rirj
r2

+Dvv
t t (r, t)δij , (6)

where Dvv
r r and Dvv

t t are the longitudinal and transverse structure functions.

SECOND ORDER STRUCTURE FUNCTIONS AND THE EQUATION OF ENERGY BALANCE IN MHD

The symmetry of the MHD equations provides the evolution equation of two structure functions of second order. The first
one is the equation of energy balance in MHD
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where εv (x) and εb (x) denote the corresponding local energy dissipation rates and where we have made use of the
assumption of homogeneity. The generalization of the four-fifths law from hydrodynamic turbulence in the presence of a
magnetic field can be derived from this equation according to

Dvvv
r r r (r)− 12Chhu

t t r (r)− 24
r4

∫ r

0

dr′ r′3Cuhh(r′) = −4
5
〈εv + εb〉r. (8)

This relation involves the correlation functions 〈(hjun−ujhn)h′
i〉 = Cuhh(r)

( rj

r δin −
rn

r δij
)

and 〈hihju′
n〉 = Chhu

i j n(r).
However, in the case of MHD turbulence this relation is not closed, since the source term from Cuhh(r) doesn’t vanish in
the inertial range. An approximation for the source term can be obtained from the other second order evolution equation
of the cross helicity 〈vibj〉 and allows one to draw analogies to the Iroshnikov-Kraichnan phenomenology.



NEXT ORDER STRUCTURE FUNCTION

In the next order of the hierarchy we have to deal the first time with structure functions containing the pressure gradient
increment Pi = 1

ρ
∂
∂Xi

[
p− p′ + 1

2ρ(|h|
2 − |h|′2)

]
. In the inertial range and under the assumption of homogeneity one

gets
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For stationary turbulence and in using the notation from above, we get
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where Tijk(r, t) denotes the pressure contributions. Inserting the corresponding tensors from [6] yields
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for the longitudinal structure functions and
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r r,t t (r) = −Trtt(r), (12)

for the mixed structure functions.
Similar equations were derived for hydrodynamic turbulence by Hill [2] and Yakhot [5]. However, the equations (12) and
(13) show new features like cancellation effects for equipartition solutions and the influence of the magnetic pressure. The
corresponding equations in two dimensions were derived and structure functions were evaluated from direct numerical
simulations. The second and fourth order structure functions are depicted in Fig. 1 and reveal the interesting questions if
rescaling relations between longitudinal and transverse structure functions similar to the ones presented in [4] can exist in
MHD turbulence.
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Figure 1. Structure functions of second and fourth order from DNS of the 2D MHD equations with hyperviscosity ν = λ = 2 · 10−10

evaluated over 20 large-eddy turnover times.
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