TURBULENT PAIR DISPERSION AT SHORT TIMES

Falkovich Gregory ${ }^{1}$, Frishman Anna ${ }^{1}$
${ }^{1}$ Physics of Complex Systems, Weizmann Institute of Science, Rehovot Israel

Abstract We develop an analytic formalism and derive new exact relations that express the short-time dispersion of fluid particles via the single-time velocity correlation functions in homogeneous isotropic and incompressible turbulence. The formalism establishes a bridge between single-time Eulerian and long-time Lagrangian pictures of turbulent flows. In particular, we derive an exact formula for a short-term counterpart of the long-time Richardson law, and we identify a conservation law of turbulent dispersion which is true even in non-stationary turbulence.

DESCRIPTION OF MAIN RESULTS

In this work we explore the short-time behavior of two Lagrangian tracers, initially separated by the vector \vec{R}_{0}, in a fully developed turbulent flow in dimensions. We assume the turbulence to be incompressible, homogeneous, isotropic and stationary. We study the evolution of the correlation functions of the velocity difference, $\vec{u}(t)$, and the separation, $\vec{R}(t)$, between the particles.
We begin with the spatially smooth velocity, which is relevant beneath the dissipation scale, where $u=\sigma(t) R(t)$, with $\sigma(t)$ a random matrix. We show that if $\left\langle u^{b-m} R^{a-m}(u \cdot R)^{m}\right\rangle$ is an analytic function of the velocity, then it is statistically conserved in time for the choice $a+b=-d$ and arbitrary m. This result is a continuation to all times of the classical result of Furstenberg and Zeldovich that R^{-d} is a martingale at asymptotically long times. Unlike the latter, it holds even for non stationary turbulence.
For turbulence within the inertial range, where $\left\langle u^{2}\right\rangle \propto R_{0}^{\xi_{2}}$, we suggest the generalization of the Furstenberg and Zeldovich moment, $\left\langle R(t)^{2-\xi_{2}-d}\right\rangle$, and show that while it is not a martingale, it is the only moment whose second time derivative is zero at $t=0$. Using the Kolmogorov scaling $\xi_{2}=\frac{2}{3}$, we find that $\left\langle\left(R(t) / R_{0}\right)^{-2 / 3}\right\rangle-1=-\frac{2}{27}|\bar{\epsilon}| t^{3} R_{0}^{-2}+O\left(t^{4}\right)$ in 2 d and $\left\langle\left(R(t) / R_{0}\right)^{-5 / 3}\right\rangle-1=\frac{14}{81}|\bar{\epsilon}| t^{3} R_{0}^{-3-2 / 3}+O\left(t^{4}\right)$ in 3d. This result provides a direct manifestation of time reversal symmetry breaking for pair dispersion and one can view it as a counterpart to the Richardson law $\left\langle R(t)^{2}\right\rangle \propto t^{3}$ for short times.

