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Abstract To understand the turbulent flows in porous media, LES has been performed by a multiple-relaxation-time lattice Boltzmann
method. Using the simulation data, the mechanism of turbulent flows is discussed by investigating the budget terms of the volume
averaged Reynolds stress equation. The behaviors of production terms, pressure correlation terms and dissipation terms are analyzed
by changing the porosity of the porous media. It is found that there is a relation between the porous characterisitc scales and production
terms that contribute to micro-scale stresses.

OUTLINE OF NUMERICAL METHOD

Turbulent flows in porous media are often encountered in environmental and engineering fields. Although the turbulent
flows play important role in heat and mass transfer, from the engineering view point, direct prediction of the turbulence
in porous media is difficult due to their complex geometry. Hence, to predict the engineering turbulence in porous media,
macroscopic RANS modelling is needed. In order to perform RANS modelling, it is essential to understand how each
process in averaged equations works. In this study, LES is performed to discuss the mechanism of the turbulence based
on the double averaged equations.
The present LES is performed by the D3Q27 MRT-LBM. The SGS model used is the WALE model which satisfies the
near wall scaling;νt = o(y3) without damping functions. The total viscosity:ν = ν0 + νt, whereν0 andνt are the
kinetic and SGS eddy viscosities respectively, are jointly applied to the relaxation factors in the MRT-LBM. In this study,
the geometry illustrated in Fig.1 is considered. The computation domain is4H(x) × 2H(y) × 0.5H(z) and periodical
boundary conditions are imposed in thex−, y−, z−directions. Varying the square rods sizeD, the porosityφ of the flow
field is changed:φ = 1 − (D/H)2. The Reynolds number is defined as Red = UdD/ν0 = 3500, whereUd is Darcy
velocity. The grid node number is480(x)× 240(y)× 60(z).
Following Whitaker[S.Whitaker, The Forchheimer equation: A theoretical development. Transp.Porous Med.25, 27-61],
the volume averaging is applied to the Reynolds stress transport equation. The valueϕ is decomposed into the intrinsically
averaged value⟨ϕ⟩f and its dispersioñϕ . The volume averaged stress tensorRA

ij = ⟨Rij⟩f is divided into the macro

scale stressesRM
ij = ⟨u′

i⟩f ⟨u′
j⟩f and the micro-scale stressesRm

ij = ⟨ũ′
iũ

′
j⟩f . With the assumption that the porous media

is homogeneous and the flow inside the porous medium is developed, the remaining terms are the production, pressure
correlation and dissipation terms. They are:
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The first term of Eq.(1)PMS
ij is called the macro-scale mean shear production and also appears in the transport equation

of RM
ij . The other terms are the micro-scale mean shear productionPmS

ij and the dispersive shear production terms
Pmd1
ij , Pmd2

ij . They appear in the transport equation ofRm
ij . The first term of Eq.(2):ΠM

ij , is called the macro-scale
pressure strain that redistributes the mcaro-scale stressesRM

ij and the second termΠm
ij is called the micro-scale pressure

strain that appears in the micro-scale stressesRm
ij transport equation. In this study the REV(representative elementary

volume) is considered as shown in Fig.1.
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Fig.1 Computational domain. Fig.2 Turbulence intensities.

Fig.3 Budget terms. Fig.4 Production terms and length scales.

RESULTS AND DISCUSSIONS
Fig.2 shows the results ofRM

ij , Rm
ij andRA

ij against the porosityφ. It can be seen that all the macro-scale stresses
RM

ij vanish atφ = 0.64. Although all the total turbulence intensities become smaller as the porosity becomes higher,
interestingly,RA

22 is enhanced in the higher porosity cases. In the higer porosity cases, it is found that only the macro-
scale stressRM

22 is produced. Consequently,RA
11 = Rm

11 andRA
33 = Rm

33 at φ = 0.75 and0.84, whilst RA
ij = Rm

ij at
φ = 0.64.
Fig.3 shows the budget terms. Since there is no gradient of the volume averaged mean velocity, the mean shear production
termsPMS

ij andPmS
ij vanish, whilst dispersive shear production termsPmd1

ij andPmd2
ij exist. AlthoughPmd2

ij contributes
a little due to large scale perturbation, it is found to be negligibly small. Hence it is considered thatPmd1

ij is the main
production ofRm

22 andPA
11 ≃ Pmd1

11 , PA
22 ≃ Pmd1

22 ,PA
33 ≃ 0. Since the production of the macro-scale stress becomes 0,

the macro-scale stressRM
22 is considered to be produced by the cascade process from the micro-scale turbulence energy.

The macro-scale pressure correlationΠM
ij seems to vanish statistically, whilst it is not obvious by its definition. Thus,

ΠA
ij = Πm

ij . No pressure correlation of the macro-scale stress means thatRM
11 , RM

33 are not redistributed fromRM
22 . This is

also confirmed by Fig.2. From these results, the micro-scale stressesRA
11, RA

22 are produced by the production termsPm
ij

andRA
33 is mainly redistributed fromRA

11 byΠm
33.

Fig.4 shows the production terms normalized by twice of the production of the micro-scale turbulence energyPm
kk. The

scales of the mean particle diameterDp = D and the mean pore diameterdp = 1 −D are also plotted. It is found that
Pmd1
11 shows the distribution profile along withmax(Dp, dp) whilstPmd1

22 accords withmin(Dp, dp). It is thus confirmed
that the characteristic length scales of porous media have a relation with turbulent length scale and production terms.

CONCLUSIONS

To understand the mechanism of turbulence for RANS modelling, the budget terms of the volume averaged Reynolds stress
equation are investigated by performing LES for flows in homogeneous porous media. It is found that the micro-scale
stresses are produced by the production terms except forRm

33 and the redistribution terms areΠm
11 ≃ −Πm

33,Π
m
22 ≃ 0.

Though the macro-scale stressRM
22 is produced in a higher porosity case, it is found thatRM

11 ≃ RM
33 ≃ 0. Since the

production terms of the macro-scale stresses becomes 0 and there is no pressure-correlation, the macro-scale stresses are
considered to be produced by back scattering from the micro-scale stresses. It is confirmed that there is a relation between
the characteristic length scales of porous media and the production terms.


