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Abstract To understand the turbulent flows in porous media, LES has been performed by a multiple-relaxation-time lattice Boltzmann
method. Using the simulation data, the mechanism of turbulent flows is discussed by investigating the budget terms of the volume
averaged Reynolds stress equation. The behaviors of production terms, pressure correlation terms and dissipation terms are analyzed
by changing the porosity of the porous media. Itis found that there is a relation between the porous characterisitc scales and production
terms that contribute to micro-scale stresses.

OUTLINE OF NUMERICAL METHOD

Turbulent flows in porous media are often encountered in environmental and engineering fields. Although the turbulent
flows play important role in heat and mass transfer, from the engineering view point, direct prediction of the turbulence
in porous media is difficult due to their complex geometry. Hence, to predict the engineering turbulence in porous media,
macroscopic RANS modelling is needed. In order to perform RANS modelling, it is essential to understand how each
process in averaged equations works. In this study, LES is performed to discuss the mechanism of the turbulence based
on the double averaged equations.

The present LES is performed by the D3Q27 MRT-LBM. The SGS model used is the WALE model which satisfies the
near wall scalingy; = o(y?) without damping functions. The total viscosity: = v + v, Wherey, andv; are the

kinetic and SGS eddy viscosities respectively, are jointly applied to the relaxation factors in the MRT-LBM. In this study,
the geometry illustrated in Fig.1 is considered. The computation domdif (8) x 2H (y) x 0.5H (z) and periodical
boundary conditions are imposed in the y—, z—directions. Varying the square rods sie the porosityy of the flow

field is changedy = 1 — (D/H)?. The Reynolds number is defined as;Re U;D /vy = 3500, wherelU, is Darcy

velocity. The grid node number i80(z) x 240(y) x 60(z).

Following Whitaker[S.Whitaker, The Forchheimer equation: A theoretical development. Transp.PoroSNad61],

the volume averaging is applied to the Reynolds stress transport equation. The istiseomposed into the intrinsically
averaged valuég)/ and its dispersiom . The volume averaged stress tenRj} = (R;;)/ is divided into the macro

scale stresseB)| = (u})/(u/)7 and the micro-scale stressk§ = (u;a})/. With the assumption that the porous media
is homogeneous and the flow inside the porous medium is developed, the remaining terms are the production, pressure
correlation and dissipation terms. They are:
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The first term of Eq.(l)DiJJVS is called the macro-scale mean shear production and also appears in the transport equation
of Rf]”. The other terms are the micro-scale mean shear produéﬁp?and the dispersive shear production terms

Pl prd2 - They appear in the transport equationkfy. The first term of Eq.(2)11}/, is called the macro-scale
pressure strain that redistributes the mcaro-scale str%%eemd the second terii;; is called the micro-scale pressure
strain that appears in the micro-scale stredgfistransport equation. In this study the REV(representative elementary

volume) is considered as shown in Fig.1.
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Fig.1 Computational domain. Fig.2 Turbulence intensities.
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Fig.3 Budget terms. Fig.4 Production terms and length scales.

RESULTS AND DISCUSSIONS

Fig.2 shows the results cﬁf‘f , R} and R;“j against the porosity. It can be seen that all the macro-scale stresses
Rf‘f vanish atp = 0.64. Although all the total turbulence intensities become smaller as the porosity becomes higher,
interestingly, R4, is enhanced in the higher porosity cases. In the higer porosity cases, it is found that only the macro-
scale stresgt); is produced. Consequentli; = RY} and R§; = Ry} ate = 0.75 and0.84, whilst R} = R} at

= 0.64.
gig.S shows the budget terms. Since there is no gradient of the volume averaged mean velocity, the mean shear production
termsP)S and P} vanish, whilst dispersive shear production terfis*! and P/ exist. AlthoughP;7¢* contributes
a little due to large scale perturbation, it is found to be negligibly small. Hence it is considerelq?;tﬁhﬁs the main
production of R53 and Pf} ~ Pt Psy ~ Pmdl P ~ 0. Since the production of the macro-scale stress becomes 0,
the macro-scale stregd)’ is considered to be produced by the cascade process from the micro-scale turbulence energy.
The macro-scale pressure correlatltbﬁ’ seems to vanish statistically, whilst it is not obvious by its definition. Thus,
H;‘} = II;}. No pressure correlation of the macro-scale stress meanBthak3; are not redistributed fronk;3. This is
also confirmed by Fig.2. From these results, the micro-scale strBg$eRs5, are produced by the production terRfs
and R4} is mainly redistributed frorm®;} by 117
Fig.4 shows the production terms normalized by twice of the production of the micro-scale turbulencePgheiiie
scales of the mean particle diamefey = D and the mean pore diameigy = 1 — D are also plotted. It is found that
Pl shows the distribution profile along withax(D,, d,,) whilst P33?! accords withmin(D,, d,,). Itis thus confirmed
that the characteristic length scales of porous media have a relation with turbulent length scale and production terms.

CONCLUSIONS

To understand the mechanism of turbulence for RANS modelling, the budget terms of the volume averaged Reynolds stress
equation are investigated by performing LES for flows in homogeneous porous media. It is found that the micro-scale
stresses are produced by the production terms excegtfoand the redistribution terms até; ~ —II53, 1155 ~ 0.

Though the macro-scale strégy is produced in a higher porosity case, it is found tRdf ~ R} ~ 0. Since the

production terms of the macro-scale stresses becomes 0 and there is no pressure-correlation, the macro-scale stresses ar
considered to be produced by back scattering from the micro-scale stresses. Itis confirmed that there is a relation between
the characteristic length scales of porous media and the production terms.



