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Abstract In this paper we present governing equations that could be used for computing the scaling of Péclet number (Pe) and Nusselt
number (Nu) in turbulent convection. Under the limiting cases we observe that Pe ≈

√
RaPr for Re � 1,Pe � 1; Pe ≈ RaPr for

Re� 1,Pe� 1; and Pe ≈ Ra0.62 for Re� 1,Pe� 1. We also show that the normalized correlation function between the vertical
velocity field and the temperature fluctuations scales as Ra−0.22 for moderate Ra, which would flatten beyond the critical Rayleigh
number leading to the “ultimate regime".

The scaling of large-scale properties like Péclet and Nusselt numbers have been modelled using the properties of bulk and
boundary layers [3, 4, 6, 10]. In this paper we derive the properties of large-scale quantities by applying scaling arguments
on the bulk flow for some regimes of Prandtl and Rayleigh numbers. Our results based on scaling arguments are consistent
with the Grossmann-Lohse theory [4], and are in good agreement with experiments and numerical simulations.

One of the generic features observed in all our numerical simulations are the finite amplitude of Fourier modes θ̂(0, 0, 2n) [7],
where the three indices indicate wavenumber components (kx, ky, kz). We observed that

θ̂(0, 0, 2n) ≈ − ∆

2nπ
. (1)

where ∆ is the temperature difference between the top and bottom plates, which are separated by a distance d. It is
important to note that θ̂(0, 0, 2n) do not contribute to buoyancy since ûz(0, 0, 2n) = 0 due to the absence of net vertical
mass flux across any horizontal surface. Therefore, the large-scale quantities of the momentum equation are related as

c1
U2
L

d
= αgθres + c2ν

UL
d2
, (2)

where where α is the coefficient of thermal expansion, g is gravitational acceleration, ν is the kinematic viscosity, c1, c2
are constants, θL and UL are the large scale temperature and velocity fluctuations respectively, and θres is defined by

θ2res = θ2L −
∑
n

|θ̂(0, 0, 2n)|2. (3)

Similarly, the temperature equation of Rayleigh-Bénard convection (RBC) yields

c3
ULθL
d

=
∆

d
UL + c4κ

θL
d2
, (4)

where κ is the thermal diffusivity of the fluid, and c3, c4 are constants. The above set of equations succinctly describe the
large-scale quantities of RBC. The constants c1, c2, c3, c4 could be weak functions of Prandtl number, aspect ratio, etc.
We can determine the scaling of large-scaling quantities using Eqs. (2,4) once c1, c2, c3, c4 have been computed from the
data from experiments and numerical simulations. Here, we present scaling of UL and θL under limiting cases.

1. Re � 1, Pe � 1: In this regime, the nonlinear terms of equations. (2,4) are much larger than the diffusive terms,
which can be ignored. Therefore, θL ≈ ∆ and Pe = ULd/κ ≈ (RaPr)1/2. Numerical simulations also reveal
that θL ≈ 0.25∆ with c3 ≈ 4. Using the fact that Pe ≈ 0.2(RaPr)1/2, we compute c1 ≈ 4.25. In this case, the
thermal and viscous boundary layers are very thin. Hence, bulk scaling provides us good estimate of the large-scale
quantities [11].

2. Re � 1, Pe � 1: Since Pe � 1, the term (∆/d)uL matches with the diffusive term in equation (4) thus yielding
θL ≈ RaPr and Pe ≈ RaPr. We can also deduce that Re ≈ Ra for Pr = 0. Here, the thermal boundary layer
covers most of the box. Hence, the bulk scaling provides us valuable insights.

3. Re � 1, Pe � 1: In this case, the nonlinear term of equation (2) is ignored, but the pressure term contributes
significantly leading to [8]

ν∇2u ≈ αg

[∑
k

|θ̂(k)|2 k
2
⊥
k6

]1/2

≈ αg∆Ra−ζ . (5)

Consequently, θL ≈ 0.28∆ and Pe ≈ 0.20Ra0.62 with ζ ≈ 0.38. Pandey et al. [8] showed that c2 = 0.8 based
on the data from numerical simulation. In this case, the viscous boundary layer spans most of the container, thus
making the arguments of bulk scaling quite significant.



We observe that the values deduced from the model are in good agreement with the experimental and numerical results
reported earlier, as well as with the predictions of Grossmann and Lohse theory [4]. We are in the process of using the
above arguments to compute the Peclét number and θL as a function of the Prandtl and Rayleigh numbers. Our work
show that the constants ci’s may depend on parameters like Prandtl number, etc. This work is under progress.

The aforementioned scaling of UL and θL are important for understanding the Nusselt number scaling. In the following,
we present scaling for moderate Pr.

The Nusselt number, which is a measure of the total heat transfer compared to the conductive heat transfer, is given by [11]

Nu− 1 = 〈u′zθ′res〉 = Cuθ(RaPr)〈u′2z 〉
1/2
V 〈θ

′2
res〉

1/2
V , (6)

where Cuθ(RaPr) is the correlation function between the vertical velocity and the temperature fluctuations. For moderate
Prandtl numbers, Verma et al. [11] observed that

Cuθ(RaPr) =

〈
〈u′zθ′res〉V

〈u′2z 〉
1/2
V 〈θ′2res〉

1/2
V

〉
t

∼ (RaPr)−0.2, (7)

at least up to Ra ≈ 108. Here V and t stand for the volume and temporal averages respectively. From the discussion on
the earlier section, (u′z)L ≈ (RaPr)1/2. Therefore,

Nu ≈ (RaPr)1/2−0.2 ≈ (RaPr)0.3, (8)

which is observed in experiments and numerical simulations up to Ra = 1014 or so.

In a recent experiment, He et al. [5] report an increase in the Nusselt number exponent to approximately 0.38 near
Ratr = 5 × 1014, which they attribute to onset of the "ultimate regime" predicted by Kraichnan [6]. Interestingly, the
transitional Rayleigh number Ratr corresponds to Re ≈ Pe ≈ 0.1×

√
Ratr ≈ 4× 106, which is close to the transitional

Reynolds number for the emergence of the turbulent boundary layer in the flow over a flat plate, as well as for the flow
past a cylinder. Ahlers et al. [1] reported a logarithmic profile for the temperature above Ra = Ratr, which is in general
agreement with the logarithmic profile for the velocity in the turbulent boundary layer for the flow past a flat plate. These
arguments strongly suggest the birth of a turbulent boundary layer, as well as destruction of the "large-scale circulation",
near the plates near Ra = Ratr [1]. Note that the turbulent boundary layer is expected to appear earlier for rough plates
than for smooth ones. This could be the reason for onset of the ultimate regime at lower Ra in the experiments of Chavanne
et al. [2] and Roche et al. [9].

The variation of Cuθ ∼ (RaPr)−0.2 appears to be a key ingredient for the deviation from Kraichnan’s prediction that
Nu ∼ Ra1/2 for the "ultimate regime" [11]. Verma et al. [12] predict that Cuθ(RaPr) should flatten in the ultimate
regime beyond Ra = Ratr ≈ 1015.

In this paper we presented scaling of large scale quantities like Peclét and Nusselt numbers. These features demonstrate
that bulk properties are very useful in determining characteristics of convection.
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