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Abstract The e method is widely used in engineering for transition prediction. When it is applied to three-dimensional boundary
layers, one has to choose the direction along which the growth rate of the disturbance is to be integrated. The direction determined on
the base of saddle point method is mathematically most reasonable. However, unlike in the case of water wave, in problems of
hydrodynamic stability, its physical meaning is not so obvious, as the frequency and wave number may be complex. And even more,
on some occasions, one may not be able to find the direction on the base of continuously varying the frequency and wave number. In
this paper, these problems are clarified by investigating the evolution of a wave packet through DNS. Suggestions for how to do
transition prediction are also provided for the case of discontinuity of direction set by saddle point method.

INTRODUCTION
Boundary-layer transition prediction is an important problem both from theoretical and practical points of view. Up to
date, the only method which has a sound physical basis and also is widely used in engineering applications is the e™
method. It is based on linear stability theory from which an eigenvalue problem is formulated. For a spatial problem, the
frequency is real, and the wave number can be complex. In the e" method, one has to follow a wave with given
frequency, calculate its amplification rate, and then integrate the amplification rate until its amplitude is amplified up to
the e" times of the initial amplitude. The integration is carried on the path of the wave. For a fixed frequency, there can
be countless eigenvalue solutions with different wave numbers. How to choose the one that determines the final
transition location among all of waves having the same frequency is a key issue in using the e-N method. Cebeci and
Stewartson[1-2] used the saddle point method of complex function theory to investigate the evolution of a wave packet
with complex wave number. According to them, one should choose such a wave that its wave number satisfies the

condition (0a/0B), =0 , and the propagation direction of the wave is given by ¢=tan*{~(a/8) }=0 . The strategy proposed

by Cebeci and Stewartson has the soundest basis from mathematical point of view. However, its physical meaning is not
clear enough. Even more, on some occasions, one may not be able to find such a direction on the base of continuously
varying wave number. In this paper, we will clarify these problems by investigating the propagation of a wave packet
through direct numerical simulation (DNS), and also study a problem in which wave satisfying the condition set by
Cebeci and Stewartson may not be able to find at a certain point under the condition of continuously varying the wave
number. Suggestions will be given for how to deal with such a problem in transition prediction.

NUMERICAL METHODS AND RESULTS
The propagation of a wave packet in boundary layers on a flat plate is considered. Two cases are computed as shown in
table 1, where the Reynolds number is defined by the displacement thickness at inlet of the computational domain,
which is far downstream from the leading edge, and the oncoming flow quantities such as velocity, temperature, density
and viscosity coefficient. The wall is adiabatic and the temperature of the oncoming flow is 79K.
The governing equations are compressible full Navier-Stokes equations. A 5™ order upwind scheme is used for the split
nonlinear term, and a 6" order central scheme is used for viscous term. The 3" order Runge-Kutta scheme is used for
the time advancing.
After a steady 2-D base flow is obtained, disturbance in the shape of a wave packet in span-wise direction is introduced
at the inlet, which is given by

q(xy,zt)=G(2)a(y)e™ " +cc, G(z)= Aje (n/
where Q(y) is the eigen-function of O-S equation with given frequency » and span-wise wave number 3, A, is the

initial amplitude, a very small number as 1.5x10®. All the parameters are shown in table 1. For case Il, two wave

packets having different spanwise wave numbers are introduced simultaneously.
Table 1. Parameters in DNS computation

Mach Reynolds
Case number number XL Xy Xz, Mesh a o B
Case | 3 5x10* 400X 50X 390 400 200X 600 -0.008 0.14 0.48
Case Il 6 10* 200X 25X 200 800X 150X 380 -0.003 0.84 0.797,0
Case |

Figure 1 shows the distribution of initial fluctuating stream-wise velocity along the spanwise direction at yn.x where
G(y,,,) attains the maximum value in normal direction. The amplitude of wave packet as shown in figure 2 is obtained



as follows, first, for a given x, search the maximum stream-wise fluctuating velocity within a time period for each mesh
point, and then find the maximum among all the points, it is the value shown in figure 2. The curve shown in figure 3
labeled DNS is the loci of points having the maximum stream-wise fluctuating velocity for each x. The e-N integral
based on the saddle point method is also used to compute the amplitude amplification of the T-S wave and the wave
orientation (labeled by SPM). The comparisons with those from DNS are shown in figure 2 and 3 respectively. The
fairly good agreements show that the e-N method based on the saddle point method reflects the evolution, both in
direction and magnitude, of the peak of a wave packet.
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Figure 1 Distribution of flunctuating velocity along z Figure 2 Comparison of amplitude amplification Figure 3 Comparison of wave orientation

Case Il

Linear stability analysis is performed for profiles of the base-flow at different stream-wise locations. Assuming 3 being
real, then the variation curve of the stream-wise growth rate a; against span-wise wave number 3 is shown in figure 4.
For real B, Cebeci and Stewartson’s condition corresponds to the extremum of the curve. At x=100, there are three
extremum points, namely point A, B and C, among which we can take only two of them into account, namely, A, B or C.
A corresponds to a 2-D wave, and B corresponds to a 3-D wave. At x=100, B is more unstable than A, hence should be
the first candidate in e™ method. However, beginning from x=148, B is no longer an extremum point, so according to
Cebeci and Stewartson, B should be dropped out from the consideration. On the other hand, at first, A is least unstable
wave compared with its neighboring wave, but starting from somewhere between x=131-135, it becomes the most
unstable one. If we look at the wave packets A and B in spectral space shown in figure 5, which is obtained by DNS, it
is clear that at first, the amplitude of wave packet B grows more rapidly than the amplitude of A, but later, it almost
ceases to grow, while the amplitude of wave packet A keeps growing and eventually becomes far bigger than that of B.
Hence, in transition prediction, wave A would be the one likely to trigger transition.
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Figure 4 Linear stability analysis of baseflow: (a) x=100~135, (b) x=140~200  Figure 5 Amplitude of disturbances in spectral space
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CONCLUSIONS

1. For the case of Mach number 3, the results from DNS and the saddle-point e-N method agree with each other very
well, implying that this method reflects the evolution of peaks in form of a wave packet.

2. For the case of Mach number 6, there is a possibility that condition of Cebeci and Stewartson may ceased to be
satisfied at a certain point. In this case, another wave number [ satisfying the condition of Cebeci and Stewartson
should also be tested, though initially, it may be less unstable than the other one. Physically, it may be due to the fact
that when the Mach number is over 4, there may be a competition between 3-D first mode unstable wave and 2-D
second mode unstable wave, and the former is oblique wave, while the latter is 2-D wave.
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