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as follows, first, for a given x, search the maximum stream-wise fluctuating velocity within a time period for each mesh 
point, and then find the maximum among all the points, it is the value shown in figure 2. The curve shown in figure 3 
labeled DNS is the loci of points having the maximum stream-wise fluctuating velocity for each x. The e-N integral 
based on the saddle point method is also used to compute the amplitude amplification of the T-S wave and the wave 
orientation (labeled by SPM). The comparisons with those from DNS are shown in figure 2 and 3 respectively. The 
fairly good agreements show that the e-N method based on the saddle point method reflects the evolution, both in 
direction and magnitude, of the peak of a wave packet. 

 
Figure 1 Distribution of flunctuating velocity along z  Figure 2 Comparison of amplitude amplification Figure 3 Comparison of wave orientation 

Case II 
Linear stability analysis is performed for profiles of the base-flow at different stream-wise locations. Assuming  being 
real, then the variation curve of the stream-wise growth rate i against span-wise wave number  is shown in figure 4. 
For real , Cebeci and Stewartson’s condition corresponds to the extremum of the curve. At x=100, there are three 
extremum points, namely point A, B and C, among which we can take only two of them into account, namely, A, B or C. 
A corresponds to a 2-D wave, and B corresponds to a 3-D wave. At x=100, B is more unstable than A, hence should be 
the first candidate in eN method. However, beginning from x=148, B is no longer an extremum point, so according to 
Cebeci and Stewartson, B should be dropped out from the consideration. On the other hand, at first, A is least unstable 
wave compared with its neighboring wave, but starting from somewhere between x=131-135, it becomes the most 
unstable one. If we look at the wave packets A and B in spectral space shown in figure 5, which is obtained by DNS, it 
is clear that at first, the amplitude of wave packet B grows more rapidly than the amplitude of A, but later, it almost 
ceases to grow, while the amplitude of wave packet A keeps growing and eventually becomes far bigger than that of B. 
Hence, in transition prediction, wave A would be the one likely to trigger transition.  

  
Figure 4 Linear stability analysis of baseflow: (a) x=100~135, (b) x=140~200   Figure 5 Amplitude of disturbances in spectral space 

 

CONCLUSIONS 
1. For the case of Mach number 3, the results from DNS and the saddle-point e-N method agree with each other very 
well, implying that this method reflects the evolution of peaks in form of a wave packet.  
2. For the case of Mach number 6, there is a possibility that condition of Cebeci and Stewartson may ceased to be 
satisfied at a certain point. In this case, another wave number  satisfying the condition of Cebeci and Stewartson 
should also be tested, though initially, it may be less unstable than the other one. Physically, it may be due to the fact 
that when the Mach number is over 4, there may be a competition between 3-D first mode unstable wave and 2-D 
second mode unstable wave, and the former is oblique wave, while the latter is 2-D wave. 
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