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Abstract The incompressible Navier-Stokes equations constitute anexcellent mathematical modelization of turbulence. Unfortu-
nately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers. Therefore, dynamically less complex
mathematical formulations are necessary for coarse-grainsimulations. Eddy-viscosity models for Large-Eddy Simulation (LES) is an
example thereof: they rely on differential operators that should be able to capture well different flow configurations (laminar and 2D
flows, near-wall behavior, transitional regime...). In thepresent work, several differential operators are derived from the criterion that
vortex-stretching mechanism must stop at the smallest gridscale. Moreover, since the discretization errors may play an important role
a novel approach to discretize the viscous term with spatially varying eddy-viscosity is used. It is based on basic operators; therefore,
the implementation is straightforward even for staggered formulations.

INTRODUCTION

We consider the simulation of the incompressible Navier-Stokes (NS) equations. In primitive variables they read

∂tu + C(u, u) = Du −∇p, ∇ · u = 0, (1)

whereu denotes the velocity field,p represents the pressure, the non-linear convective term isgiven by C(u, v) =
(u · ∇)v, and the diffusive term readsDu = ν∆u, whereν is the kinematic viscosity. Direct simulations at high
Reynolds numbers are not feasible because the convective term produces many scales of motion. Hence, in the foreseeable
future numerical simulations of turbulent flows will have toresort to models of the small scales. The most popular example
thereof is the Large-Eddy Simulation (LES). Shortly, LES equations result from filtering the NS equations in space

∂tu + C(u, u) = Du −∇p −∇ · τ(u) ; ∇ · u = 0, (2)

whereu is the filtered velocity andτ(u) is the subgrid stress tensor and approximates the effect of the under-resolved
scales,i.e. τ(u) ≈ u ⊗ u − u ⊗ u. Then, the closure problem consists on replacing (approximating) the tensoru ⊗ u

with a tensor depending only onu (and notu). Because of its inherent simplicity and robustness, the eddy-viscosity
assumption is by far the most used closure model

τ(u) ≈ −2νeS(u), (3)

whereνe denotes the eddy-viscosity andτ(u) is considered traceless without the loss of generality.

RESTRAINING THE PRODUCTION OF SMALL SCALES

The essence of turbulence are the smallest scales of motion.They result from a subtle balance between convective
transport and diffusive dissipation. Numerically, if the grid is not fine enough, this balance needs to be restored by a
turbulence model. Hence, the success of a turbulence model depends on the ability to capture well this (im)balance. Let
us consider an arbitrary part of the domain flow,Ω, with periodic boundary conditions. The inner product is defined in the
usual way:(a, b) =

∫
Ω

a · bdΩ. Then, taking theL2 inner product of (1) with−∆u leads to the enstrophy equation

1/2‖ω‖2

t
= (ω, C(ω, u)) − ν(∇ω,∇ω), (4)

where‖ω‖2 = (ω, ω) and the convective term contribution(C(u, ω), ω) = 0 vanishes because of the skew-symmetry of
C. Following [3], the vortex-stretching term can be expressed in terms of the invariantR = −1/3tr(S3) = −det(S)

(ω, C(ω, u)) = −
4

3

∫

Ω

tr(S3)dΩ = 4

∫

Ω

RdΩ = 4R̃, (5)

whereas the diffusive terms may be bounded in terms of the invariantQ = −1/2tr(S2)

(∇ω,∇ω) = −(ω, ∆ω) ≤ −λ∆(ω, ω) = 4λ∆

∫

Ω

QdΩ = 4λ∆Q̃, (6)

whereλ∆ < 0 is the largest (smallest in absolute value) non-zero eigenvalue of the Laplacian operator∆ on Ω and (̃·)
denotes the integral overΩ. However, it relies on the accurate estimation ofλ∆ on Ω. The latter may be cumbersome,



especially on unstructured grids. Alternatively, it may be(numerically) computed directly from(∇ω,∇ω) or, even

easier, by simply noticing that(∇ω,∇ω) = 4
∫
Ω

Q(ω)dΩ = 4Q̃(ω). However, from a numerical point-of-view, these
integrations are not straightforward. Instead, recallingthat∇ × ∇ × u = ∇(∇ · u) − ∆u and∇ · u = 0, a more
appropriate expression can be obtained as follows

(∇ω,∇ω) = −(ω, ∆ω) = (ω,∇×∇× ω) = (∇× ω,∇× ω) = (∆u, ∆u) = ‖∆u‖2. (7)

Then, to prevent a local intensification of vorticity,i.e. ‖ω‖t ≤ 0, the inequalityHΩ ≤ ν(∆u, ∆u)/(ω, Sω) must be
satisfied, whereHΩ denotes the overall damping introduced by the model in the (small) part of the domainΩ. Additionally,
the dynamics of the large scales should not be significantly affected by the (small) scales contained within the domain
Ω, i.e. (ω, Sω) < 0. Then, from Eq.(5) and noticing that0 < HΩ ≤ 1, a proper definition of the overall damping

factor followsHΩ = min
{
ν‖∆u‖2/|R̃|, 1

}
. An eddy-viscosity model,τ(u) = −2νeS(u), adds the dissipation term

(∇ω, νe∇ω) to the enstrophy equation. In this case, the eddy-viscosity, νe, results

νe = max
{
(4|R̃| − ν‖∆u‖2)/‖∆u‖2, 0

}
. (8)

This analysis can be extended further for other differential operators. For instance,τ ′(u) = 2ν′

e
S(∆u) andτ ′′(u) =

−2ν′′

e
S(∆2

u), where∆2 ≡ ∆∆ is the bi-Laplacian, lead to the following hyperviscosity terms in the enstrophy equation
−(∇ω, ν′

e
∇∆ω) and(∇ω, ν′′

e
∇∆2

ω) . Then, following similar reasonings,ν′

e
andν′′

e
follow

ν′

e
= max

{
−(4|R̃| − ν‖∆u‖2)/(∆u, ∆2

u), 0
}

and ν′′

e
= max

{
(4|R̃| − ν‖∆u‖2)/‖∆2

u‖2, 0
}

. (9)

DISCRETIZING THE VISCOUS TERM WITH SPATIALLY VARYING EDDY-VISCOSITY

The NS equations (1) with constant physical properties are discretized on a staggered grid using a fourth-order symmetry-
preserving discretization [4]. Here we propose to apply thesame ideas to discretize the eddy-viscosity model (3) for
LES (2). To obtain the Eq.(1) (withν replaced byν + νe) from Eqs.(2)-(3) with constantνe notice that2∇ · S(u) =
∇·∇u+∇·(∇u)T and recall the vector calculus identity∇·(∇u)T = ∇(∇·u) to cancel out the second term. However,
for non-constantνe, the discretization of∇ · (νe(∇u)T ) needs to be addressed. This can be quite cumbersome especially
for staggered formulations. The standard approach consiston discretizing the term∇ · (νe(∇u)T ) directly. However,
this implies manyad hocinterpolations that tends to smear the eddy-viscosity,νe. This may (negatively?) influence the
performance of eddy-viscosity especially near the walls. Instead, an alternative form was proposed in [2]. Shortly, with the
help of vector calculus it can be shown that∇· (νe(∇u)T ) = ∇(∇· (νeu))−∇· (u⊗∇νe). Then, recalling that the flow
is incompressible, the second term in the right-hand-side can be written as∇· (u⊗∇νe) = (u ·∇)∇νe = C(u,∇νe), i.e.

∇ · (νe(∇u)T ) = ∇(∇ · (νeu)) − C(u,∇νe). (10)

In this way, consistent approximations of Eqs.(2)-(3) can be constructed without introducing new interpolation operators.

CONCLUDING REMARKS AND FUTURE RESEARCH

In the context of LES, three eddy-viscosity-type models have been obtained. Namely, (i)τ(u) = −2νeS(u), (ii) τ ′(u) =
2ν′

e
S(∆u) and (iii) τ ′′(u) = −2ν′′

e
S(∆2

u), whereνe, ν′

e
andν′′

e
are given by Eqs.(8) and (9), respectively. Notice that,

apart fromR, these models can be straightforwardly implemented by re-using the discrete diffusive operator. They can
be related with already existing approaches. Firstly, the model (i) is almost the same than the recently proposedQR-
model [3]. Essentially, they only differ on the calculationof the diffusive contribution to the enstrophy equation: instead
of making use of the equality (7) it is bounded by means of the inequality (6), therefore, the eddy-viscosity is given by
νe ∝ λ−1

∆
|R̃|/Q̃ instead of Eq.(8). Regarding the models (ii) and (iii) they can be respectively related to the well-known

small-large and small-small variational multiscale methods [1] by noticing thatu′ = −(ǫ2/24)∆u + O(ǫ4). All these
models switch off (R → 0) for laminar (no vortex-stretching), 2D flows (λ2 = 0 → R = 0) and near the wall (R ∝ y1).
To test the performance of these new turbulence models in conjunction with the new discretization approach is part of our
research plans. In particular, we plan to test them for a turbulent channel flow and square duct atReτ = 1200.
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