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Abstract The incompressible Navier-Stokes equations constitutexaellent mathematical modelization of turbulence. Unfor
nately, attempts at performing direct simulations aretiahito relatively low-Reynolds numbers. Therefore, dyreaity less complex
mathematical formulations are necessary for coarse-grainlations. Eddy-viscosity models for Large-Eddy Sintiola (LES) is an
example thereof: they rely on differential operators thetdd be able to capture well different flow configuratiorer{inar and 2D
flows, near-wall behavior, transitional regime...). In gresent work, several differential operators are derivethfthe criterion that
vortex-stretching mechanism must stop at the smallestsgate. Moreover, since the discretization errors may phaiyrgortant role
a novel approach to discretize the viscous term with spatialying eddy-viscosity is used. It is based on basic dpesatherefore,
the implementation is straightforward even for staggeoethtilations.

INTRODUCTION
We consider the simulation of the incompressible Naviek&s (NS) equations. In primitive variables they read

Ou + C(u,u) = Du — Vp, V-u =0, (1)

wherew denotes the velocity fieldy represents the pressure, the non-linear convective tegivés by C(u,v) =
(u-V)w, and the diffusive term readBu = vAwu, wherev is the kinematic viscosity. Direct simulations at high
Reynolds numbers are not feasible because the convectiv@teduces many scales of motion. Hence, in the foreseeable
future numerical simulations of turbulent flows will haverésort to models of the small scales. The most popular exampl
thereof is the Large-Eddy Simulation (LES). Shortly, LESi&tipns result from filtering the NS equations in space

ou+Cu,u)=Du—-Vp—-V-7(m); V- -u=0, @)

wherew is the filtered velocity and (@) is the subgrid stress tensor and approximates the effeteafinder-resolved
scalesj.e.7(u) = u® u — u ® w. Then, the closure problem consists on replacing (appratim) the tensot ® u
with a tensor depending only am (and notu). Because of its inherent simplicity and robustness, ttdy-adiscosity
assumption is by far the most used closure model

T(u) = —2v.S(u), 3)

wherer, denotes the eddy-viscosity an¢iu) is considered traceless without the loss of generality.

RESTRAINING THE PRODUCTION OF SMALL SCALES

The essence of turbulence are the smallest scales of molibey result from a subtle balance between convective
transport and diffusive dissipation. Numerically, if thedgis not fine enough, this balance needs to be restored by a
turbulence model. Hence, the success of a turbulence megehds on the ability to capture well this (im)balance. Let
us consider an arbitrary part of the domain fléywith periodic boundary conditions. The inner product ifirted in the
usual way:(a,b) = [, a - bdQ2. Then, taking the.? inner product of (1) with- A leads to the enstrophy equation

1/2|w[lf = (w,C(w,w)) - v(Vw, Vw), 4)
where||w||? = (w, w) and the convective term contributiéfi(u, w), w) = 0 vanishes because of the skew-symmetry of
C. Following [3], the vortex-stretching term can be expresseterms of the invariank = —1/3tr(S3) = —det(9)

4 ~
(w,C(w,u)) = _g/ tr(S%)dQ = 4/ RdQ = 4R, (5)
Q Q
whereas the diffusive terms may be bounded in terms of treiamtQ = —1/2tr(S?)

(Vw, Vw) = —(w, Aw) < —Aa(w,w) = 4>\A/ QA = 4XAQ, (6)
Q
wherela < 0 is the largest (smallest in absolute value) non-zero e@esvof the Laplacian operatdx on €2 and@
denotes the integral ovél. However, it relies on the accurate estimatiomaf on Q2. The latter may be cumbersome,



especially on unstructured grids. Alternatively, it may (pemerically) computed directly frofiVw, Vw) or, even

easier, by simply noticing thdVw, Vw) = 4 [, Q(w)dQ = 4@?5). However, from a numerical point-of-view, these
integrations are not straightforward. Instead, recaltimgtV x V x u = V(V - u) — Au andV - u = 0, a more
appropriate expression can be obtained as follows

(Vw,Vw) = —(w, Aw) = (w,V x V x w) = (V x w,V x w) = (Au, Au) = || Aul®. (7)

Then, to prevent a local intensification of vorticitye. |w||; < 0, the inequalityHq, < v(Au,Au)/(w, Sw) must be
satisfied, wherél denotes the overall damping introduced by the model in timal(} part of the domaif. Additionally,

the dynamics of the large scales should not be significafffiacted by the (small) scales contained within the domain
Q, i.e. (w,Sw) < 0. Then, from Eq.(5) and noticing that < H, < 1, a proper definition of the overall damping

factor follows Hg = min {V||Au||2/|}~2|, 1}. An eddy-viscosity modek(w) = —2v.S(u), adds the dissipation term
(Vw, v.Vw) to the enstrophy equation. In this case, the eddy-viscasityesults

ve = max { (4 R| - v]|Aw||?)/ | A2, 0} ®

This analysis can be extended further for other differéofierators. For instance;(u) = 2v.S(Aw) andr”’(u) =
—2u"S(A%w), whereA? = AA is the bi-Laplacian, lead to the following hyperviscosgyrs in the enstrophy equation
—(Vw,v.VAw) and(Vw, v/ VA?w) . Then, following similar reasonings, andv” follow

v = max {~(4R| - v| Aw[*)/ (AT, A%),0}  and v = max {(4|F] - v Awl®)/|A%]%, 0} . (9)

DISCRETIZING THE VISCOUSTERM WITH SPATIALLY VARYING EDDY-VISCOSITY

The NS equations (1) with constant physical properties B@etized on a staggered grid using a fourth-order symymetr
preserving discretization [4]. Here we propose to applyshene ideas to discretize the eddy-viscosity model (3) for
LES (2). To obtain the Eq.(1) (with replaced by + v.) from Egs.(2)-(3) with constant. notice that2V - S(u) =
V-Vu+V-(Vu)T and recall the vector calculus identi: (Vu)?T = V(V-u) to cancel out the second term. However,
for non-constant,, the discretization o¥ - (v.(Vu)?) needs to be addressed. This can be quite cumbersome elgpecial
for staggered formulations. The standard approach coosisliscretizing the ternv - (v.(Vu)?) directly. However,

this implies manyad hocinterpolations that tends to smear the eddy-viscosity,This may (negatively?) influence the
performance of eddy-viscosity especially near the watistdad, an alternative form was proposed in [2]. Shortli thie

help of vector calculus it can be shown tRat(v.(Vu)?) = V(V - (veu)) — V- (u® Vr.). Then, recalling that the flow

is incompressible, the second term in the right-hand-sdebe written a8 - (u @ Vv, ) = (u-V)Vr, = C(u, Vi,), i.€.

V- (ve(Vu)T) = V(V - (vew)) — Clu, V). (10)

In this way, consistent approximations of Egs.(2)-(3) carbnstructed without introducing new interpolation opera

CONCLUDING REMARKSAND FUTURE RESEARCH

In the context of LES, three eddy-viscosity-type modelsshasen obtained. Namely, fiu) = —2v.S (@), (i) 7' (w) =

20! S(Aw) and (iii) 77 (w) = —2v”S(A%w), wherev,, v/, andv! are given by Egs.(8) and (9), respectively. Notice that,
apart fromR, these models can be straightforwardly implemented bysmeguthe discrete diffusive operator. They can
be related with already existing approaches. Firstly, tlogleh (i) is almost the same than the recently propagét
model [3]. Essentially, they only differ on the calculatiofithe diffusive contribution to the enstrophy equatiorstead

of making use of the equality (7) it is bounded by means of tieguality (6), therefore, the eddy-viscosity is given by
Ve X )\£1|R|/Q instead of Eq.(8). Regarding the models (ii) and (iii) they de respectively related to the well-known
small-large and small-small variational multiscale methfl] by noticing thatu’ = —(e2/24)Au + O(¢*). All these
models switch off £ — 0) for laminar (no vortex-stretching), 2D flows{ = 0 — R = 0) and near the wallR o y').

To test the performance of these new turbulence models jjuiection with the new discretization approach is part of our
research plans. In particular, we plan to test them for auterti channel flow and square duct/at, = 1200.
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