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Abstract The geometrical statistics of fluid deformation are nunalycusing direct numerical simulations. The analysis shtwat
the pressure Hessian is the leading cause to destroy theraig between the longest axis of the material element andttbngest
stretching eigen-direction of the strain rate. It alsolftates the alignment between the longest axis of the eleamhthe intermediate
eigen-direction of the strain rate during initial evolutjdut tends to oppose the alignment later.

In this talk we look into the alignment between a materiag lelement and the eigenvectors of the strain rate tensor. The
alignment problem has been addressed in [2, 1, 4, 5, 3], amthregs. However, the effects of pressure have not been
looked into in detail. We focus exactly on the pressure Hessi

We denote the eigenvalues of the strain rate tefgoas\i > A3 > A3, and corresponding eigenvecters e5, andes.

The eigenframe is called the S-frame. K&t be the angular velocity of the eigenframe, we have
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whereQ; is thekth component of2® in the S-frame [’ is the pressure HessiaW; is the diffusion term, andy is the

ith component of the vorticity. On the other hand, the evolutif a line element can be described by the deformation
gradientB;; = dx;/0X;, and the Cauchy-Green tengOrdefind byC;; = B;xBjr. LetX{ > A5 > A5 denote the
eigenvalues o€, ef, e5 ande§ the eigenvectors, arid® the angular velocity of the eigenframe (the C-frame), weshav
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eiiji =
Si; andwy; are the components of the strain rate tensor and vorticiyarC-frame, respectively.
We are interested in the direction cosings= |e§ - e7| (i = 1,2, 3). The equation fory; can be found as

dai
dt

= sign(e{ - €7)(Q° — Q°) - (e] x €f). 3

which shows that the evolution ef is determined by the difference between the angular védsqirojected on a direction
perpendicular to both eigendirections. There are five dmutions to the RHS of Eq. 3. We ugg), i;, and?; to denote
the contributions from the RHS of Eq. 1, aiy and RS to denote the vorticity and strain rate contributions, eespely,
from Eq. 2. R denotes the total contribution, i.&?,= sign(e{ - €)(Q* — Q°) - (ef x ).

The alignment between eigenvectors can be studied via the d¥l;, denoted asP(«;). The evolution of P(«;)

is controled by(R|a;), whose product withP(«;) gives the probability flux across;. Thus, where the gradient of
(R|a;) P(c;) is negative (positive), the probability accumulates (disps) hence PDF increases (decreases) with time.
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Figure 1. The PDFs ofw; = |ef - e7| at (a)t = 3.687, and (b)¢ = 7.357,. Solid line: ¢ = 1 (the strongest stretching direction of
Si;); dashed linei = 2 (intermediate direction); dash-dotted line= 3 (contracting direction).

We present in Fig. 1 the PDH3(«;) calculated from DNS data for reference. Essentially it shtlvat initially e§ —

ef alignment dominates, but the — e alignment dominates at later time, whi¢¢ andej remains strong. These
observations confirm what has been found in previous inyastins.

Fig. 2(a) shows the contributions from the rotation of thigéBre. It shows that both vorticity (solid line) and the %
Hessian (dashed line) work to strengthendhie- e alignment, since their curves have negative gradientsafgeks.
The contributions from the rotation of the C-frame is giverkig. 2(b). Here vorticity tends to increase the alignmeant a
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Figure 2. The probability fluxeg R*|az2) P(a2) for ef — e5 alignment at = 3.687,. (a) Solid line: R;; dashed:R;; dash-dotted:
R;, ; dotted: the sum. (b) SolidR;; dashed:Rg; dotted: the sum.
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Figure 3. The probability fluxeg R*|az) for e§ — e5 alignment at (aj = 3.687, (b) t = 1.227,,. Solid line: R* = R (total); dashed:
R* = Ry, dash-dottedR* = R — R,,.

well (solid line). It is, however, dominated by the countgitag contribution from straining (dashed line). Both figar
show that, whilst vorticity tends to enhance the alignmsigining does the opposite.

To assess the importance of the pressure Hessian term, weaoernt with the sum of the other four contributions,
referred to as local effects. Fig. 3(a) shows the compardon= 3.687,. We observe that the magnitudes for the two
are comparable, thus the pressure Hessian (dashed liregdiichs significant effects. The curve for local effectsk{das
dotted) has a steep negative slope near= 1, implying that they strongly prefer thef — e5 alignment. The curve for
pressure Hessian has a positive slop&-at 1. Thus, it does not prefer the perfect alignment betwefeandes.

For as around 0, the pressure Hessian contribution has a steegiéiveslope. This means that pressure Hessian is more
effective at aligning:§ ande; when they are nearly perpendicular. This interpretati@olaborated by Fig. 3(b), where
the comparison is made at ar= 1.227,. At this stagee{ dominantly aligns witre§ and tends to be perpendiculare.

The figure shows that the contribution from pressure Hessiamnuch stronger, consistent with the above interpretation
We also consider the results for the alignment betwsesnde; (figures not shown). We compare the pressure Hessian
and the total of other local effects for= 1.22,3.68 and7.357,, respectively. The comparison shows that the pressure
Hessian is the main cause for the reduction ofdéhe- ef alignment (with steep positve slope near= 1). The effect
persists throughout the evolution. The local effectsalfiifialso help reduce the alignment, but then turn to to eocb#n

at later time. The two contributions almost balance eachrdththe end.

CONCLUSIONS

To summarize, we show that the pressure Hessian is resofmithe misalignment between the long axis of the Cauchy-
Green tensor and the stretching eigendirection of therstede. It facilitates the alignment between the long axithef
Cauchy-Green tensor and the intermediate eigendirecfidineostrain rate during initial evolution but reverses caur
later. The result highlights the important and subtle effe¢ the pressure Hessian.
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