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THE EFFECTS OF PRESSURE HESSIAN ON FLUID DEFORMATION

Yi Li 1
1School of Mathematics and Statistics, University of Sheffield, S3 7RH, UK

Abstract The geometrical statistics of fluid deformation are numerically using direct numerical simulations. The analysis shows that
the pressure Hessian is the leading cause to destroy the alignment between the longest axis of the material element and the strongest
stretching eigen-direction of the strain rate. It also facilitates the alignment between the longest axis of the element and the intermediate
eigen-direction of the strain rate during initial evolution, but tends to oppose the alignment later.

In this talk we look into the alignment between a material line element and the eigenvectors of the strain rate tensor. The
alignment problem has been addressed in [2, 1, 4, 5, 3], amongothers. However, the effects of pressure have not been
looked into in detail. We focus exactly on the pressure Hessian.
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whereΩs
k is thekth component ofΩs in the S-frame,P s

ij is the pressure Hessian,V s
ij is the diffusion term, andωs

i is the
ith component of the vorticity. On the other hand, the evolution of a line element can be described by the deformation
gradientBij = ∂xi/∂Xj, and the Cauchy-Green tensorC defind byCij = BikBjk. Let λc
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the eigenvectors, andΩc the angular velocity of the eigenframe (the C-frame), we have
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Sc
ij andωc

k are the components of the strain rate tensor and vorticity inthe C-frame, respectively.
We are interested in the direction cosinesαi = |ec

1
· esi | (i = 1, 2, 3). The equation forαi can be found as
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which shows that the evolution ofαi is determined by the difference between the angular velocities projected on a direction
perpendicular to both eigendirections. There are five contributions to the RHS of Eq. 3. We useRs

o, Rs
p, andRs

v to denote
the contributions from the RHS of Eq. 1, andRc

o andRc
s to denote the vorticity and strain rate contributions, respectively,

from Eq. 2.R denotes the total contribution, i.e.,R = sign(ec
1
· esi )(Ω

s −Ω
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c
1
).

The alignment between eigenvectors can be studied via the PDF of αi, denoted asP (αi). The evolution ofP (αi)
is controled by〈R|αi〉, whose product withP (αi) gives the probability flux acrossαi. Thus, where the gradient of
〈R|αi〉P (αi) is negative (positive), the probability accumulates (disperses) hence PDF increases (decreases) with time.
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Figure 1. The PDFs ofαi = |ec
1 · es

i | at (a)t = 3.68τη and (b)t = 7.35τη . Solid line: i = 1 (the strongest stretching direction of
Sij ); dashed line:i = 2 (intermediate direction); dash-dotted line:i = 3 (contracting direction).

We present in Fig. 1 the PDFsP (αi) calculated from DNS data for reference. Essentially it shows that initiallyec
1
−

e
s
1

alignment dominates, but theec
1
− e

s
2

alignment dominates at later time, whileec
1

andes
1

remains strong. These
observations confirm what has been found in previous investigations.
Fig. 2(a) shows the contributions from the rotation of the S-frame. It shows that both vorticity (solid line) and the pressure
Hessian (dashed line) work to strengthen thee

c
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alignment, since their curves have negative gradients for largeα2.
The contributions from the rotation of the C-frame is given in Fig. 2(b). Here vorticity tends to increase the alignment as
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Figure 2. The probability fluxes〈R∗|α2〉P (α2) for ec
1 − e

s
2 alignment att = 3.68τη . (a) Solid line:Rs

o; dashed:Rs
p; dash-dotted:

R
s
v ; dotted: the sum. (b) Solid:Rc

o; dashed:Rc
s; dotted: the sum.
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Figure 3. The probability fluxes〈R∗|α2〉 for ec
1 − e

s
2 alignment at (a)t = 3.68τη (b) t = 1.22τη . Solid line:R∗ = R (total); dashed:

R
∗ = R

s
p; dash-dotted:R∗ = R −R

s
p.

well (solid line). It is, however, dominated by the counteracting contribution from straining (dashed line). Both figures
show that, whilst vorticity tends to enhance the alignment,straining does the opposite.
To assess the importance of the pressure Hessian term, we compare it with the sum of the other four contributions,
referred to as local effects. Fig. 3(a) shows the comparisonat t = 3.68τη. We observe that the magnitudes for the two
are comparable, thus the pressure Hessian (dashed line) indeed has significant effects. The curve for local effects (dash-
dotted) has a steep negative slope nearα2 = 1, implying that they strongly prefer theec
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2

alignment. The curve for
pressure Hessian has a positive slope atα2 = 1. Thus, it does not prefer the perfect alignment betweene

c
1

andes
2
.

Forα2 around 0, the pressure Hessian contribution has a steeper positive slope. This means that pressure Hessian is more
effective at aligningec

1
andes

2
when they are nearly perpendicular. This interpretation iscollaborated by Fig. 3(b), where

the comparison is made at ant = 1.22τη. At this stageec
1

dominantly aligns withes
1

and tends to be perpendicular toes
2
.

The figure shows that the contribution from pressure Hessianis much stronger, consistent with the above interpretation.
We also consider the results for the alignment betweene

c
1

andes
1

(figures not shown). We compare the pressure Hessian
and the total of other local effects fort = 1.22, 3.68 and7.35τη, respectively. The comparison shows that the pressure
Hessian is the main cause for the reduction of thee

c
1
− e

s
1

alignment (with steep positve slope nearα1 = 1). The effect
persists throughout the evolution. The local effects initially also help reduce the alignment, but then turn to to enhance it
at later time. The two contributions almost balance each other in the end.

CONCLUSIONS

To summarize, we show that the pressure Hessian is responsible for the misalignment between the long axis of the Cauchy-
Green tensor and the stretching eigendirection of the strain rate. It facilitates the alignment between the long axis ofthe
Cauchy-Green tensor and the intermediate eigendirection of the strain rate during initial evolution but reverses caurse
later. The result highlights the important and subtle effects of the pressure Hessian.
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