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Abstract The influence of a shear-thinning rheology on nonlinear waves withadd3-6tational symmetry in pipe flow is studied. We
focus on the family of waves discovered by Faisst & Eckhardt in 20@8]in & Kerswell in 2004. The Carreau model, which is quite
regular, is chosen to describe the rheology of the fluid. The pseustirapcode of Roland et al. 2010 is used to compute the nonlinear
waves, by continuation, starting from the Newtonian case. The retardstemt found in 2010 is studied in a more systematic manner:
the influence of the axial wavenumber is analyzed. An asymptotic regimisdsvered in the limit of quite strong shear-thinning
effects, where the fluid behaves like a power-law fluid. If one admitsttigahonlinear waves are ‘precursors’ of turbulence, this gives
a lower bound for the onset of turbulence in the pipe flow of some Qaard power-law fluids.

INTRODUCTION

The transition to turbulence in pipe flow is difficult to mogdelen in Newtonian fluids, because of its highly nonlinear
nature. A new path has been opened recently by [3, 6] to attaslproblem. It consists in computing ‘exact coherent
structures’ which are nonlinear traveling waves. For eachilfy of waves, there is a critical Reynolds number below
which no such waves exist, and at which a first wave emergesighra saddle-node bifurcation. We focus here on the
waves found by [3, 6] with a 3-fold rotational symmetry, jiié.(r, 0, z) are the cylindrical coordinates withthe axis of
revolution of the pipe, the waves are invariant unler 6 + 27 /3. The waves are also invariant under» z + 27 /q
with ¢ the axial wavenumber. For these waves the critical Reyrldsber, based on the mean flow velodity the pipe
radiusa and the kinematic viscosity, is

Re = 2aW /v = 1251. (1)

This is a lower bound of the Reynolds numbers at which turizéde=xists. Moreover, some experiments have shown that,
in ‘puffs’, the flow structure can transiently approach time @f the nonlinear traveling waves computed numerically [4
For all these reasons, these nonlinear waves may be viewpceasrsors’ of turbulence.

In non-Newtonian fluids, a delay for the onset of developetuience in pipes has been evidenced experimentally by
several authors, e.g. [1, 2]. Most non-Newtonian fluids beasthinning and viscoelastic. Here we focus on the inflaen

of the shear-thinning effects, neglecting the elasticaasp of the fluid, which has been the effect of a lot of attenitio

the literature. By computing nonlinear waves of the famflyhe ones found by [3, 6], we obtain a model of the transition
delay found experimentally.

MODEL AND METHODS

Most of the non-Newtonian fluids used experimentally exrsbiong shear-thinning effects, for which the power-law or
Cross or Carreau-Yasuda rheological models are relevardll these models, the viscosity at zero rate-of-strairois n
defined (power-law) or not differentiable (Cross or Carr&¥asuda). In order to have, from a mathematical point of yiew
a well-posed problem, we consider instead a Carreau maxteltich the viscosity dependence on the velocity field is
c:

v = 1y (1 + \2Dy)(n=1/2 2)
with v the viscosity at rest) the characteristic time of the fluid, < 1 the shear-thinning index), the second invariant
of the rate-of-strain tensor. In our computationsz 1/2. A relevant time unit is the advection timg = a/W, with Wy
the centerline velocity of the laminar flow at the mean presguadient that is applied. When= 0, a Newtonian fluid
is recovered. When > ¢!, the laminar flow approaches the one of a power-law fluid

v =1y \"7! Dénfl)/z , 3)

i.e., the fluid behaviour approaches the behaviour of a ptavefluid. Experimentally, the relevant Reynolds number is
the one based on the wall-viscosity, o
Re, = 2aW /v, . (4)

This viscosity can be determined from a measurement of thigowessure gradient, which gives access to the wall shear
stress. The rheological law then gives. The transition delay advocated in our Introduction holdenRe, numbers
are used. From a theoretical point of view, as sooh gs2t,, the power-law fluid formula

Vw = A" (1+1/n)" ! (5)
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Figure 1. (a) : Critical Reynolds numbers for the onset of the waves computed=aiyy or at optimalg. Black: Re, for ¢ = qn;
blue: Re, for optimal ¢; red: Re,, for optimalg. (b) : Logarithm of the wall viscosity.,, numerically computed (black disks) or
calculated from the formula (5) (black line); logarithm of the mean viscasjfynumerically computed (red disks) and fitted (6) (red
line); logarithm of the mean viscosity,,;, in the corresponding power-law fluid laminar base flow (green life)d, €) : Velocity
fields averaged over for the critical waves at optimaj for A = 0 (c), 4t, (d), 8t (€). The colors show the difference between the
mean axial velocity of the waves and the corresponding laminar flowtbe/stshow the mean flow in the section.

gives a good estimate of, [Black data Fig. 1b]. A pseudo spectral code has been deseltmpcompute nonlinear waves
in the pipe flow of Carreau fluids [5]. The first results obtainfr which the axial wavenumberwas set at its critical
value for Newtonian fluidsy = gy = 2.44/a, showed a quite strong retardation effect [Black data Fag. Because of
the large Reynolds numbers attained\at 2t,, which require a high resolution, larger values\oirere not studied.

RESULTS

By varying the axial wavenumbey; in order to minimizeRe,, nonlinear waves are found, which occur at quite smaller
values ofRe,, as compared with the ones computed Jo= ¢y [Blue data Fig. 1a]. When — +o0, Re, and the
velocity field of the critical waves converge towards an agtotic limit [Fig. 1d,e]. Accordingly the critical wavenuser
tends tog,, = 1.99/q, the phase velocity t0.48511, and the mean velocity 1©.415W,. A computation of the viscosity

in the nonlinear critical wave flows, averaged in the volurhéhe pipe, i.e. the mean viscosity,,, demonstrates [Red
data Fig. 1b] the existence of an asymptotic law of a formlsinto (5): as\ — +oo,

Um ~ v AL (6)
The mean viscosity,, is the relevant viscosity for these waves. Indeed, the Rdgmuumber based on this viscosity,
Re, = 2aW /vy, , @)

stays almost constant whateverfrom A = 0 (Newtonian fluid) toA — +oo (power-law fluid) [Red data Fig. 1a]:
Re, = 2aW /v, ~ RgA=0) = 1251. (8)

This surprisingly simple result, and the fact that the meanosity in the waves is of the order of the mean viscosity in
the base laminar flow of the corresponding power-law flujg, = > A" ~!, which can be computed analytically [Green
data Fig. 1b], yields an approximate analytic formula far thitical Reynolds number of the waves in the asymptotic
regime,

Re, = (vm/vw) Re, ~ 1251 (v /) - 9

This formula may be used for Carreau and power-law fluids with 1/3, for v,,;, to be defined.
References

[1] M. Escudier, R. Poole, F. Presti, C. Dales, C. Nouar, Gsddry, L. Graham, and L. Pullum. Observations of asymmetrioal lehaviour in
transitional pipe flow of yield-stress and other shear#thmig liquids. J. Non-Newtonian Fluid Mect27:143-155, 2005.

[2] M. P. Escudier, S. Rosa, and R. J. Poole. Asymmetry in ttiansil pipe flow of drag-reducing polymer solutiordls.Non-Newtonian Fluid Mech.
161:19-29, 2009.

[3] H. Faisst and B. Eckhardt. Traveling waves in pipe fl®ys. Rev. Letf1:224502,1-4, 2003.

[4] B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuadit H. Faisst, B. Eckhardt, H. Wedin, R. R. Kerswell, and Bléffe. Experimental
observation of nonlinear traveling waves in turbulent glpe. Science305:1594-1598, 2004.

[5] N. Roland, E. Plaut, and C. Nouar. Petrov-Galerkin corapain of nonlinear waves in pipe flow of shear-thinning fluifiisst theoretical evidences
for a delayed transitionComputers & Fluids39:1733-1743, 2010.

[6] H. Wedin and R. R. Kerswell. Exact coherent structuregipe flow: travelling wave solutionsl. Fluid Mech.508:333-371, 2004.



