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Abstract The four-fifths law for two-point third-order longitudinal moments in three-dimensional (3D) incompressible magnetohy-
drodynamic (MHD) turbulence is examined. The examination was based on a generalization of the Kármán-Howarth-Kolmogorov
equation for isotropic MHD turbulence to anisotropic MHD turbulence. Using direct numerical simulation data of 3D forced incom-
pressible MHD turbulence without a uniformly imposed magnetic field in a periodic box, we quantify the viscous, forcing, anisotropy
and non-stationary terms in the generalized equation. It is found that the influence of the anisotropic terms on the four-fifths law is
negligible at small scales, compared to that of the viscous term.

It is thought that there is a certain kind of statistical universality at sufficiently small scales in fully developed magneto-
hydrodynamic (MHD) turbulence as well as hydrodynamic (HD) turbulence away from boundaries. A striking feature
of this universality is the existence of exact statistical laws for homogeneous incompressible turbulence at sufficiently
high Reynolds numbers. Such exact laws are rare. In three-dimensional (3D) incompressible homogeneous isotropic HD
turbulence, we have Kolmogorov’s 4/5 law [1], which can be derived from the Kármán-Howarth-Kolmogorov equation
(hereafter referred to as the KHK equation).This 4/5 law is exact in the inertial subrange at infinitely large Reynolds num-
ber. The 4/5 law is extended to 3D incompressible MHD turbulence, using a generalized KHK equation for the two-point
second-order velocity moments under the assumption that the flow is homogeneous and isotropic[2, 3]:

⟨{δuL(x, r, t)}3⟩ − 6⟨b2L(x, t)δuL(x, r, t)⟩ = −4

5
ϵ̄tr, (1)

whereδuL is the longitudinal velocity difference between the points atx+ r andx, which is defined asδuL = {ui(x+
r, t)−ui(x, t)}ri/r, bL is the longitudinal component of the magnetic field defined bybL = biri/r, r = |r|, ui is theith
component of velocity field,bi is theith component of the appropriately normalized magnetic field so that its dimension
is the same as that of the velocity,⟨· · · ⟩ denotes the ensemble average,ϵ̄t is the total energy dissipation rate per unit mass,
andt is time. The summation convention over{1, 2, 3} is used for the repeated subscriptsi andj. This law is exact in
the inertial subrange for infinitely large kinetic and magnetic Reynolds numbers. However, any real turbulence, in which
the kinetic and magnetic Reynolds numbers and the scale range are finite, is not statistically isotropic, homogeneous, or
stationary in a strict sense, owing to the influences of viscosity, external forcing, large-scale anisotropy, and so on. This
law is examined using direct numerical simulation (DNS) data of 3D forced incompressible MHD turbulence without
mean magnetic field in a periodic box under the assumption of flow isotropy and stationarity [3].

In this paper, we examine the influences of anisotropy, as well as large-scale forcing, viscosity, and non-stationarity,
on the 4/5 law, Eq. (1), for 3D incompressible MHD turbulence in the absence of a uniformly imposed magnetic field
in a periodic box. Emphasis is placed on the influence of anisotropy. We extend the generalized KHK equation for
isotropic MHD turbulence to anisotropic MHD turbulence. The generalization procedure follows that in Ref. [4], in
which a generalized KHK equation for incompressible anisotropic HD turbulence in a periodic box is derived to examine
Kolmogorov’s 4/5 law. The average⟨· · · ⟩ is understood as the volume average over the fundamental periodic domain.
We derive the following evolutions of the two-point second-order velocity moments, which is here called the generalized
KHK equation for incompressible anisotropic MHD turbulence:

⟨⟨(δuL)
3⟩⟩r − 6⟨⟨b2LδuL⟩⟩r = −4

5
ϵ̄ur + Iν(r) + If (r) + It(r) + Ia(r), (2)

where⟨ξ(r)⟩r denotes the average ofξ(r) over r on the spherical surface of radiusr with a center atr = 0, ϵ̄u =
ν⟨∂jui∂jui⟩ + ⟨bibj∂jui⟩, Iβ = 3

∫ r

0
r̂3Hβ(r̂)dr̂/r

4, (β = ν, f, t, a), Hν(r) = 2ν∂r{⟨⟨δuiδui⟩⟩r}, Hf (r) =
∫∫∫

|r̂|≤r

⟨δfu
i (r̂)δui(r̂)⟩d3r̂/(2πr2), Ht(r) = −

∫∫∫
|r̂|≤r

∂t⟨δui(r̂)δui(r̂)⟩d3r̂/(4πr2), Ha(r) = Hu(r) + Hb(r), Hu(r) =

{∂r
(
r4⟨⟨(δuL)

3⟩⟩r
)
}/(3r3) − ⟨⟨δuiδuiδuL⟩⟩r, Hb(r) = −2{∂r

(
r4⟨⟨b2LδuL⟩⟩r

)
}/r3 + 4⟨⟨bLbiδui⟩⟩r, ∂r = ∂/∂r,

∂t = ∂/∂t, ∂j = ∂/∂xj , δfu
i = fu

i (x + r) − fu
i (x), f

u
i is the kinetic forcing, andν is the kinematic viscosity. Using

the magnetic energy equation, we find the following relation betweenϵ̄u and ϵ̄t: ϵ̄u = ϵ̄t − ⟨bif b
i ⟩ + dĒb/dt, where

f b
i is the magnetic forcing, and̄Eb = ⟨bibi⟩/2. If flow is strictly isotropic,Hu = Hb = 0, and thenIa = Ha = 0.

Therefore, the termIa expresses the degree of anisotropy. If allIβ (β = ν, f, t, a) are negligible in the inertial subrange,
dĒb/dt = 0, and if f b

i = 0, then we obtain the 4/5 law which is consistent with Eq. (1) derived in Refs. [2, 3]. These
works use a generalized KHK equation for homogeneous isotropic MHD turbulence and the evolution equation of mean
kinetic and magnetic energies for the case thatf b

i = 0, in arriving Eq. (1). This equation (1) is in accordance with Eq.
(7) for 3D case of Ref. [5] for generalized KHK equations for homogeneous isotropic MHD turbulence based on the
Elsässer variablesz±i , i.e., the evolution equations of⟨δz±i δz±i ⟩. The accordance shows that the latter does not contain
the third-order moments arising from the induction equations.
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Figure 1. Ther/Lu dependence of the normalized viscous termĨν , forcing termĨf , the magnitude of the normalized non-stationary
term, |Ĩt|, and the magnitude of the normalized anisotropic term,|Ĩa|, together with the normalized third-order terms− ˜⟨⟨(δuL)3⟩⟩r
and6 ˜⟨⟨b2LδuL⟩⟩r, whereLu is the integral length scale. The constant line denoting4/5 is plotted as a reference.

We quantify the influences ofIβ (β = ν, f, t, a) and of the third-order moments on the 4/5 law, using instantaneous
DNS data of 3D forced incompressible MHD turbulence without a uniformly imposed magnetic field in a periodic box
at the moderate kinetic and magnetic Taylor micro-scale Reynolds numbers,Ru

λ = 158 andRb
λ = 323. The magnetic

Prandtl number is set to one, and the number of grid points is5123. The forcing is imposed only on the large-scale velocity
field. The DNS was performed until the field becomes quasi-stationary. The modulus of the time-derivative ofĒb is very
small, i.e.,|dĒb/dt| ≃ 10−5(≃ 10−4ϵ̄t), and then̄ϵu ≃ ϵ̄t.

Figure 1 shows that6 ˜⟨⟨b2LδuL⟩⟩r is very dominant over− ˜⟨⟨(δuL)3⟩⟩r for all r, wherẽ· denotes the normalization of
· by ϵ̄ur. This predominance is in accordance with the result obtained in Ref. [3], except at large scales. Taking into
account the fact that6⟨⟨b2LδuL⟩⟩r and−⟨⟨(δuL)

3⟩⟩r respectively result from the nonlinear termsbj∂jbi anduj∂jui, the
predominance is also consistent with previous DNSs in Refs. [6, 7], where the flux forbj∂jbi is dominant over that for

uj∂jui. It is seen that6 ˜⟨⟨b2LδuL⟩⟩r is almost constant in the range0.2 < r/Lu < 0.5. This small departure is also

consistent with the result in Ref. [3]. The normalized term− ˜⟨⟨(δuL)3⟩⟩r is comparable to the normalized forcing term

Ĩf and the viscous term̃Iν in the range0.17 ≤ r/Lu ≤ 0.38. Except for this range,− ˜⟨⟨(δuL)3⟩⟩r is smaller than either
the forcing termĨf or the viscous term̃Iν . We observe that the normalized non-stationary term|Ĩt| is much smaller than
Ĩν at small scales, and much smaller thanĨf at large scales. However, it is also observed that aroundr/Lu ≃ 0.3, |Ĩt| is
not very much smaller thañIν and Ĩf , while |Ĩt| is one-order of magnitude larger than the normalized anisotropic term
|Ĩa|. We find that|Ĩa| is at least one-order of magnitude smaller thanĨν except at large scales. This finding shows that the
influence of these anisotropic terms on the 4/5 law is not significant compared to that of the viscosity, at least in our DNS.

Therefore, the departure of the maximum value of6 ˜⟨⟨b2LδuL⟩⟩r − ˜⟨⟨(δuL)3⟩⟩r from 4/5 is mainly due to the influences of
forcing, viscosity, and non-stationarity. We also examined the directional anisotropy defined by the departure of the third-
order moments in a particular direction ofr from the spherically averaged ones (figure omitted). Although the influence
of the anisotropic termIa on the 4/5 law is negligible, the influence of the directional anisotropy on the four-fifths law is
suggested to be substantial, even in the case that we average the directional anisotropy over the three Cartesian directions,
at least in the case studied here. This is in contrast to homogeneous quasi-isotropic HD turbulence examined in Ref. [4],
where averaging−⟨(δuL)

3⟩ over the three directions is a good approximation of−⟨⟨(δuL)
3⟩⟩r. The reader interested in

the detailed of this work may refer to Ref. [8].
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