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Abstract We numerically study the flow generated in precessing spheres and spherical shells with small (ri/ro = 0.1) inner cores, and
either stress-free or no-slip inner boundary conditions. For each of these three cases we consider the sequence of bifurcations as the
Reynolds number Re = r2oΩ/ν is increased up to ∼1280, focusing particular attention on bifurcations that break the flow symmetry
U(−r) = −U(r). The precession amplitude ε = Ωp/Ω, measuring the ratio of the precession rate to the rotation rate, is fixed at
0.3. The angle between the precession axis and the rotation axis is fixed at 120◦. For the full sphere we obtain three regimes: (a)
steady, symmetric solutions for Re ≤ 880, (b) periodic, symmetric solutions for 885 ≤ Re ≤ 1000, (c) quasi-periodic, asymmetric
solutions for Re ≥ 1005. For the stress-free inner core case the symmetric solutions are much as before, but the asymmetric regime is
more complicated. For the no-slip inner core case we find two distinct solution branches. The first branch is purely symmetric, and (a)
steady for Re ≤ 860, (b) periodic for 865 ≤ Re ≤ 1185, (c) quasi-periodic for 1190 ≤ Re. The second branch is asymmetric and
quasi-periodic, and exists only for Re ≥ 1250, below which one switches back to the symmetric branch. All solutions were computed
using two very different codes, one based on spherical harmonics and one based on spectral/finite elements, with excellent agreement
in all cases.

PHYSICAL SETTING AND EQUATIONS

A rotating solid object is said to precess when its rotation axis itself rotates (typically at a much slower rate) about a
secondary axis that is fixed in an inertial reference frame. If the rotating object is a fluid-filled container, very complicated
fluid flows may be generated. We study the flows generated in precessing spherical containers and focus on one particular
aspect of the problem, namely the symmetry by reflection through the origin. The basic nature of the driving is such that
solutions exist satisfying U(−r) = −U(r) (1), where r is the position vector, and U the fluid flow. For sufficiently strong
driving these pure-symmetric solutions may become unstable, giving rise to mixed-parity solutions that no longer satisfy
(1). It is then of interest to consider the precise sequence of bifurcations whereby the solutions gradually acquire more
and more structure, including breaking the symmetry (1). Another issue concerns the difference between a full sphere and
a spherical shell.
We here present results obtained with a code based on spectral/finite elements called SFEMaNS [1] but detailed compar-
isons with another code based on spherical harmonics [2] have shown excellent agreement (more limited comparisons
with two further codes were also done [3, 4]). Let êp be a unit vector defining the precession axis (which is fixed in the
inertial frame). In the reference frame rotating about êp at the precession rate Ωp, the container rotates about a fixed axis,
at a constant rate Ω. We denote this rotation axis as the z-axis, and define a complete Cartesian coordinate system (x, y, z)
such that êp = sinαêx + cosαêz. The angle α between the rotation axis êz and the precession axis êp is here fixed to
120◦ (corresponding to a retrograde precession) and the precession rate ε = Ωp/Ω is fixed to 0.3. Scaling length by the
container’s outer radius ro, time by Ω−1, and U by roΩ, the Navier-Stokes equation in the precessing reference frame
becomes

∂tU + U · ∇U + 2ε êp ×U = −∇p+Re−1∇2U, (2)

with associated boundary condition U = sin θ êφ at r = 1 (3), where (r, θ, φ) are spherical coordinates related to (x, y, z)
in the usual way. The condition (3) applies to both a full sphere and a spherical shell. For the sphere there are no further
conditions, but for the shell we also need to specify boundary conditions at the inner radius ri, which is fixed at ri = 0.1.
For the conditions at ri we will consider two possibilities, namely stress-free and no-slip (with the inner sphere co-rotating
and precessing with the outer sphere) [5].
We compute the sequence of bifurcations as the Reynolds number Re = r2oΩ/ν (measuring the rotation) is increased,
and consider the similarities and differences between the full sphere and the spherical shell with stress-free or no-slip
boundary conditions on the inner sphere.
In order to follow the symmetry-breaking sequence, we separate the flow into so-called symmetric and anti-symmetric
parts,

Us =
[
U(r)−U(−r)

]
/2, Ua =

[
U(r) + U(−r)

]
/2,

and consider the corresponding kinetic energies Ks and Ka.



FULL SPHERE RESULTS

We present only results for the full sphere, the two other cases are detailled in [5]. The basic sequence of bifurcations
can be summarized as follows: (a) up to Re = 880 the solutions are both steady and symmetric, satisfying (1), (b) for
885 ≤ Re ≤ 1000 they are periodic in time, but still symmetric, (c) for Re ≥ 1005 they are quasi-periodic in time,
and asymmetric. We illustrate the behavior in each of these three regimes. Figure 1(a) presents a 3D plot of the steady
solution at Re = 700. A characteristic feature is the S-shaped vortex where the flow speed |U| is very small. Near the
center this vortex is aligned along the precession axis, that is, in the xz-plane, at an angle α = 120◦. Turning next to
the periodic regime, figure 1(b) shows how the total kinetic energy K = Ks varies in time at Re = 910. Figure 2(a) at
Re = 1100 indicates the temporal behavior in the quasi-periodic, asymmetric regime where the anti-symmetric energy
Ka shows two periods (a short and a long one). The time-dependence consists of a quasi-periodic ‘vibration’ of the vortex
structure displayed in figures 2(b) and 2(c).

(a) Re = 700, steady regime in the precessing frame (b) Re = 910, periodic regime, total energy K

Figure 1. (a) The steady flow for a full sphere at Re = 700, showing isosurfaces of |U| = 0.1 and slices at z = ±0.5. (b) Time
evolution of the total kinetic energy K in the periodic regime at Re = 910

(a) Re = 1100, quasi-periodic regime, anti-
symmetric energy Ka

(b) Re = 1100 at t = tmin ≈ 2700 (c) Re = 1100 at t = tmax ≈ 3000

Figure 2. Asymmetric unsteady flow in a full sphere at Re = 1100: (a) time evolution of the anti-symmetric energy Ka, (b)-(c) two
snapshots at the time of the minimum of Ka(tmin) and of the maximum of Ka(tmax).

To conclude, the flow in a precessing sphere (and in the two other cases not shown here) exhibits a rich variety of possible
solutions. In the future, we could investigate the possible dynamo action of some of these solutions.
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