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Abstract Dense Bose superfluids, as Hell, differ from dilute ones by the existence of a roton minimum in their excitation spectrum.
It is known that this roton minimum is qualitatively responsible for density oscillations close to any singularity, such as vortex cores,
or close to solid boundaries. We show that the period of these oscillations, and their exponential decrease with the distance to the
singularity, are fully determined by the depth and the width of the roton minimum. We then study, based on a numerical simulation
of the Gross-Pitaeviskii equation with a non-local interaction term, the implication of these oscillations on the vortex reconnection
process, and quantify the amount of energy transfered from vortices to the background flow.

INTRODUCTION

Hell is the low temperature, low pressure superfluid phase of “He. The roton minimum, in its excitation spectrum, has
been inferred by Landau from the viscosity measurements of Andronikashvili. It has been shown, by Feynman to be due
to the dense packing of “He atoms. Solidification, which occurs above 2.5MPa for low temperature *He, can be seen as a
condensation of rotons, due to their interactions.

The low value of the excitation energy at the roton minimum also suggests that the superfluid has a strong susceptibility
for spatial perturbations of wave number k,, the position of the roton minimum. Localized perturbations will then produce
oscillations in the superfluid density in their neighborhood [1, 2, 3]. This has been known for long. However, the sensitivity
of these oscillations to details of the real problem at hand is not clear.

Gross-Pitaevskii equations are often proposed for modeling the dynamics, and space dependence of the order parame-
ter. The interaction term in these equations is chosen so as to fit the dispersion curve of elementary excitations. But a
large class of such interaction terms can fit the same dispersion curve. What is the influence of their differences? What
is the influence of details of the dispersion curve such as the phonon (long wavelength), maxons (maximum of the dis-
persion curve) or very short wavelength regions? Up to what precision do we have to fit the roton minimum (simple
parabola, skewness)? At the end, it is known that, for strongly interacting superfluids as *He, density could not be simply
proportional to the squared order parameter, as in dilute systems.

Determining the parameters which control the extension and amplitude of these oscillations, and discussing their im-
plications are the goals of this paper. We shall focus on density oscillations far from the singularity, where they are
small and amenable to a linear equation. We shall compare our approximation both with “exact” resolution of various
Gross-Pitaevskii models, and with the results of first principle calculations.

The existence of density oscillations close to a vortex core is expected to have tremendous importance in the study of
quantum turbulence in which a central role is played by vortex reconnections [4, 5] and thus it is useful to quantify how
these oscillations depend on the shape of the roton minimum. In particular, this study could be necessary to the design of
numerical investigations of vortex reconnections, as it was done formerly without taking into account the roton gap [6]. It
is why we shall focus on the vortex problem.
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Figure 1. Comparison between the “equilibrium” density around a vortex (dots) in the non-local Gross-Pitaeviskii (Eq. 3), with the
first order approximation Eq. 2 (full line)



RESULTS

We are interested in the deformation §p(7) far from the perturbation. As dp/p, is small, it should obey a linear equation of
the form £(i—p) = V(7,t). Due to space and time translational invariance, the Fourier transform of this equation is local,

ie. F(w, k)(w? — w(E)Q)% (w, k) = V(w, k), which simply expresses that deformations can propagate in the superfluid,

in the absence of any perturbation V(w,k) = 0, if w = +w(k). Our point is that F' is smooth in the neighborhood of
k = k,, as well as V, if the perturbation is localized. For a static perturbation, we can then write, in the general case:
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In the case of interest for us, w(k)? has a deep minimum (the roton minimum) at k = k,, that will clearly dominate the
right hand side (RHS) of Eq. 1. Let us write in its neighborhood w(k)? = Q2 + ¢?(k — k, )2, where h{) is the energy roton
gap and m, = h€/c? the “roton mass”. Performing the integration in the complex plane, we get for the inverse Fourier
transform, as explained in Ref. [7],

i—f(r) ~ Jexp(k_olj«lr) cos (kor —7n/4+ 2];10 + (bO) 2)

with k; = Q /¢, o a constant and ¢, an additional phase depending on the precise shape of the perturbation. Let us stress
that only ¢, depends on the precise shape of the perturbation, whereas oscillations wavelength ~ 1/k, and length scale
of exponential decrease ~ 1/k; (i.e. the roton-gap width) come from the existence of a roton gap.
To show the realism of our prediction Eq. 2, we estimate numerically the fundamental solution in a cylindrical symmetry
of a non local version of the Gross-Pitaevskii equation (see Ref. [7] for further details), namely:
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ihdpp(it) = — 5 —An(7it) —uw(nt)er(?:t)/d 7 O(|r=7"|/a)|(7)] C)
where 1)(7;t) is the order-parameter, (|7 — 7’| /a) represents the interaction potential between two atoms located at 7 and
7, a is the range of the potential. The interaction is typically, as considered in Ref. [2], (%) is U, if |&| < 1,0 for |Z| > 1
and 4 is the chemical potential, fixing the equilibrium density n = [)(7,)|2. We show in Fig. 1 the comparison of our
prediction to the density profile given by Eq. 3. We do reproduce accurately both oscillations our exponential decrease.
Thanks to this study, we understand and can predict the spatial extension of singularities in superfluids in the presence of
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aroton gap in the excitation spectrum located at k, (~ A ) and of width ~ 1/k;. We now design a numerical simulation

solving Eq. 3 in a periodic cubic box of size ~ 10A ", The initial condition is made of two orthogonal vortices (i.e. the
product of two fundamental solutions of Eq. 3) as in Ref. [6] with furthermore the introduction of the roton minimum.
As shown in Ref. [6], this leads to a reconnection. We quantify then the transfer of energy from the set of vortices to
the background flow. Characterizing length scales, we are able to give a precise phenomenology of the transformation of
vortex curvature energy into waves such as phonons and/or rotons.
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