

The Lack of Return to Isotropy in Decaying, Axisymmetric, Saffman Turbulence

P. A. Davidson¹, N. Okamoto², Y. Kaneda³

¹Dept. of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK

²Centre. Computational Science, Nagoya University, Nagoya 464-8603, Japan

³Aichi Institute of Technology, 470-0392, Japan

We consider freely-decaying, anisotropic, statistically-axisymmetric Saffman turbulence in which $E(k \to 0) \sim k^2$. As noted in Saffman (1967a) and Krogstad & Davidson (2010), this represents a good model of certain classes of grid turbulence in a wind-tunnel. We note that such turbulence possesses two statistical invariants which are related to the form of the spectral tensor $\Phi_{ii}(\mathbf{k})$ at small k. These are (Davidson, Okamoto & Kaneda, 2012)

$$M_{\parallel} = \Phi_{\parallel}(k_z = 0, k_{\perp} \to 0) = (2\pi)^{-3} \lim_{k_{\perp} \to 0} \int e^{-j\mathbf{k}_{\perp} \cdot \mathbf{r}_{\perp}} \left\langle u_{\parallel} u_{\parallel}' \right\rangle d\mathbf{r} = \text{constant},$$

and

$$\frac{1}{2}M_{\perp} = \Phi_{\perp}(k_z = 0, k_{\perp} \to 0) = (2\pi)^{-3} \lim_{k_{\perp} \to 0} \int e^{-j\mathbf{k}_{\perp} \cdot \mathbf{r}_{\perp}} \langle \mathbf{u}_{\perp} \cdot \mathbf{u}_{\perp}' \rangle d\mathbf{r} = \text{constant},$$

where $\left\langle u_{i}u_{j}'\right\rangle$ is the usual two-point velocity correlation, the subscripts // and \bot indicate quantities parallel and perpendicular to the axis of symmetry and $\Phi_{//}=\Phi_{zz}$, $\Phi_{\bot}=\Phi_{xx}+\Phi_{yy}$. Since $M_{//}\sim u_{//}^{2}\ell_{\bot}^{2}\ell_{//}$ and $M_{\bot}\sim u_{\bot}^{2}\ell_{\bot}^{2}\ell_{//}$, self-similarity of the large scales (when it applies) demands that $u_{//}^{2}\ell_{\bot}^{2}\ell_{//}=$ constant and $u_{\bot}^{2}\ell_{\bot}^{2}\ell_{//}=$ constant. This, in turn, requires that $u_{//}^{2}/u_{\bot}^{2}$ is constant, contrary to the popular believe that freely-decaying turbulence should exhibit a 'return to isotropy'. Numerical simulations performed in large periodic domains, with different types and levels of initial anisotropy, confirm that $M_{//}$ and M_{\bot} are indeed invariants and that, in the fully-developed state,

$$u_{\parallel}^2 \ell_{\perp}^2 \ell_{\parallel} = \text{constant}$$
, $u_{\perp}^2 \ell_{\perp}^2 \ell_{\parallel} = \text{constant}$,

from which

$$u_{\parallel}^2/u_{\perp}^2$$
 = constant, (fully-developed turbulence).

Somewhat surprisingly, the same simulations also show that $\ell_{\parallel}/\ell_{\perp}$ is more or less constant in the fully-developed state (figure 1). Simple theoretical arguments then suggest that, when $u_{\parallel}^2/u_{\perp}^2$ and $\ell_{\parallel}/\ell_{\perp}$ are both constant, the integral scales should evolve as $u_{\perp}^2 \sim u_{\parallel}^2 \propto t^{-6/5}$ and $\ell_{\perp} \sim \ell_{\parallel} \propto t^{2/5}$, irrespective of the level of anisotropy and of the presence of helicity. These decay laws, first proposed by Saffman (1967b), are verified by the simulations.

References

Davidson P.A., Okamoto, N.& Kaneda, Y. 2012 On freely-decaying, anisotropic, axisymmetric, Saffman turbulence., *J. Fluid Mech.*, **706**, 150-172,

Krogstad, P.-A. & Davidson, P.A. 2010 Is grid turbulence Saffman turbulence? *J. Fluid Mech.* **642**, 373-394

Saffman, P.G. 1967a The large-scale structure of homogeneous turbulence. *J. Fluid Mech.* **27**(3), 581-593.

Saffman, P.G. 1967b Note on decay of homogeneous turbulence. *Phys. Fluids*, **10**(6), 1349.

Figure 1. The variation of energy, integral length scales and anisotropy in 5 runs with different types and levels of initial anisotropy.