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Abstract Direct numerical simulations of the full two phase Navier-Stokes equations including surface tension in order to investigate
capillary wave turbulence are performed for the first time, using the code Gerris [1]. Wave turbulence concerns the study of the sta-
tistical properties of a set of numerous nonlinear interacting waves [2]. Waves are observed to follow the linear dispersion relation of
capillary waves and a stationary regime is reached. The wave height power spectrum in the wave-number-space or in the frequency-
space exhibits power law regimes and shows good agreement with weak turbulence theory [2]. Finally, the scaling of the spectrum with
the injected power will be discussed and compared with theoretical and experimental works.

CONTEXT

Wave turbulence focuses on the statistical properties of a set of interacting waves where energy is transferred by nonlinear
interactions from the forcing scales to the dissipative scales. A statistical theory of wave turbulence was developed in the
1960s, the so-called weak turbulence theory which exhibits such an energy transfer in out-of-equilibrium situations [2].
This theory has been applied to almost every context involving nonlinear waves: astrophysical plasmas, surface or internal
waves in oceanography, Rossby waves in the atmosphere, spin waves in magnetic materials, Kelvin waves in superfluid
turbulence, nonlinear optics and elastic waves. This theory is based on hypotheses such as those addressing weakly
nonlinear waves, infinite systems, and scale separations between energy source and sink, which may limit its applicability
to real systems. One of the most important results of wave turbulence theory is the existence of out-of-equilibrium
stationary solutions for the wave spectrum that follow Kolmogorov-like cascades of flux of conserved quantities [2]. This
cascade-type behavior is analogous of hydrodynamical turbulence (2D or 3D) and gives "Wave Turbulence" its name,
although traditionally turbulence is associated mostly with vortices, and the waves are only secondary. In wave turbulence,
the cascades are governed by the nonlinear interaction process between waves. In the case of capillary waves, non linear
interactions are due to a 3-wave process and only the energy is conserved leading to a direct cascade [2]. Stationary
capillary wave turbulence has been investigated by several authors in the last decades, experimentally [3, 4, 5, 6] and
also through numerical simulations of the kinetic equation [2] or of an Hamiltonian dynamic [7]. However, no direct
numerical simulations of capillary waves, using the complete Navier Stokes equations for a two phase fluid including
surface tension has been performed. We present here such direct numerical simulations of capillary waves and shows that
a wave turbulent spectrum is observed in agreement with theoretical predictions. This approach will enable to explore the
discrepancy observed between theory and experiments regarding the scaling of the wave spectrum with the energy flux
[4, 5], and to explore the influence of various forcing conditions and various fluid characteristics (density, viscosity ratio)
on the capillary wave turbulence state. The possible interaction between the gravity and the capillary spectrum could also
be studied by adding gravity in the simulation.
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Figure 1: Left: example of the wave field. Right: Kinetic energy (a.u) as a function of the non dimension time
omegaf t. A stationary state is observed for ωf t > 10



DISPERSION RELATION AND STATIONARY WAVE TURBULENCE REGIME

Numerical experiment. The three dimensional Navier Stokes equations, including surface tension and viscosity are
solved in a two phases fluid with the solver Gerris [1]. The density and viscosity of the gas and liquid phases correspond
to the air water situation. The simulation box is cube of length L, with the interface between the liquid and gas phases
at the middle. Wave are generated from a initially flat interface by forcing in a small area (circle of radius 0.1L) of the
simulation at low wave number around kf = 2π/(0.4L). The forcing pulsation is thus given by ωf =

√
γ
ρk

3
f , ρ the liquid

density and γ the surface tension. The excitation corresponds to the linear solution of the wave equation [8] and is set
both for the interface elevation and the bulk velocity. The grid resolution is 28 · 28 = 256 · 256 on the interface and the
boundary layer while adaptive mesh refinement is used in the bulk to reduce computational time [1].
Results. An example of the wave field is shown in figure 1 (left) and is strongly erratic. The total kinetic energy
K =

∫
liquid

ρv2/2 is calculated during the simulations and its evolution in time is shown on figure 1, for a typical
simulation. The kinetic energy is first growing fast and then reaches a stationary level for ωf t > 10, where the kinetic
energy fluctuates around a constant mean value. The spatio-temporal wave height spectrum is calculated and shown figure
2. Energy is localized in the Fourier space and follows the linear dispersion relation for capillary waves (indicated by the
black line), ω2 = γ

ρk
3, with ω the wave pulsation, k the wave number, γ the surface tension value and ρ the liquid density.

Wave turbulence theory applied to capillary waves gives the following prediction for the wave height power spectrum in

the k space: Sη(k) = Cϵ1/2
(

γ
ρ

)−3/4

k−15/4, with ϵ the mean energy flux and C a non dimension constant [2]. The
numerical wave height spectrum Sη(k) is shown figure 2 and a power law is observed on more than one decade. The
theoretical power law is indicated in red dotted line and a very good agreement between the numerical simulations and
the theory is observed. I will discuss these results as well as the interaction between gravity and capillary wave turbulent
regime, the scaling of the spectrum with the energy in the system and the influence of viscous dissipation. Moreover
detailed comparison with recent experiments on spatial measurement of capillary wave [9] performed in our group will
be provided.
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Figure 2: Left: Wave height spatio-temporal spectrum Sη(f, 1/λ). Energy is localized in the Fourier space on the linear
dispersion relation for pure capillary wave ω2 = γ

ρk
3. Right: Spatial spectrum Sη(1/λ) integrated over all frequencies.

Red dot line shows the theoretical spectrum (Kolmogorov Zakharov) spectrum ∼ k−15/4.
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