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Abstract

Characterizing free-stream disturbances and their entrainment into a shear layer is of a crucial first step towards understanding and
predicting receptivity and bypass transition. In some recent studies of bypass transition, continuous modes of the O-S equation have
been used to represent free-stream vortical disturbances and the signature induced by them in the boundary layer. For the Blasius
boundary layer, a recent study by the present authors shows that continuous modes and entrained disturbances are fundamentally
different. The former exhibit some nonphysical features such as ‘entanglement of Fourier components’ and ‘abnormal anisotropy’,
which are found to be caused by neglecting the non-parallelism. In the present paper, we consider the asymptotic suction boundary
layer, which is an exactly parallel flow. Both temporal and spatial continuous spectra may be defined mathematically. However, at
a finite R neither of them represents the physical process of free-stream vortical disturbances penetrating into the boundary layer.
The latter must instead be characterized by a peculiar type of continuous modes whose eigenfunctions increase exponentially with the
distance from the wall. In the limitR� 1, all three types of continuous spectra are identical at leading order, and hence can be used to
represent free-stream vortical disturbances and their entrainment. Low-frequency disturbances are found to generate a large-amplitude
streamwise velocity in the boundary layer, which is reminiscent of longitudinal streaks.

BOUNDARY-VALUE PROBLEMS FOR CONTINUOUS SPECTRA AND ENTRAINMENT

The asymptotic suction boundary layer forms over an infinite flat porous plate, through which a steady uniform suction
V ∗ is imposed. The non-dimensional velocity field has the exact solution(U, V ) = (1 − e−y,−1/R), and the Reynolds
numberR = U∞δ∗/ν∗ = U∞/V ∗ ; herey is normalized byδ∗ = ν∗/V ∗, the displacement thickness of the boundary
layer. The flow is perturbed by small-amplitude disturbances

(ũ, ṽ, w̃, p̃) = (u, v, w, p) ei(k1x+k3z−ωt) +c.c.,

wherec.c. stands for the complex conjugate. The functionv satisfies the Orr-Sommerfeld equation{
(D2 − k̄2)2 − ik1R

[
(U − ω/k1)(D2 − k̄2)− U ′′

]
+ (D2 − k̄2)D

}
v = 0, (1)

and the normal vorticityΩ = ik3u− ik1w is governed by the Squire equation{
ik1(U − ω/k1)− (D2 − k̄2)/R−D/R

}
Ω = −ik3U

′v, (2)

subject to the boundary conditionsv = Ω = 0 aty = 0, whereD = ∂y. The far-field condition may be written as

v(y)→ e−ik2y +B e(−1+ik2)y +C e−k̄y

Ω(y)→ E1 e−ik2y +F1 e(−1+ik2)y +k3R/(2k2) e−(1+ik2)y

}
as y →∞, (3)

wherek2 is arbitrary, and it will be specified properly when continuous spectra and entrainment are considered.
For a continuous spectrum, the solution ofv should remain bounded asy →∞, and thusk2 must be real. For atemporal
continuous mode, k1 andk3 are real, andω = ωr + iωi is complex. The dispersion relation gives

ω = k1 + k2/R− i(k2
1 + k2

2 + k2
3)/R, c = ω/k1 = 1 + k2/(ωR)− i(ω2 + k2

2 + k2
3)/(ωR). (4)

For aspatial continuous mode, ω andk3 are real, butk1 = k1,r + ik1,i is complex. From the dispersion relation, we find

k = (ω − k2/R)

[√
b2 +

4
R2

(ω − k2/R)2 + b

]−1/2

+ i
R

2

{[√
b2 +

4
R2

(ω − k2/R)2 + b

]1/2

− 1
}

, (5)

with b = 1
2 [1 + 4(k2

2 + k2
3)/R2].

In the case ofentrainment, specification of the appropriate far-field condition requires considering vortical disturbances
in the free stream, which are convected by the uniform background flow(U,−1/R). Introduce the coordinate system
(X, Y ), whereX and Y are the axes parallel and normal to streamlines in the free stream, respectively. A vortical
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Figure 1. Comparison of the distribution of an entrained disturbance (solid lines) with the eigenfunctions of conventional spa-
tial/temporal continuous modes (dashed/dash-dotted lines) for ω = 0.01 or k1 = 0.01 (temporal mode), k2 = π/2 or K2 = π/2

(entrained disturbance), k3 = π/2 and E1 = 1.
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Figure 2. Comparison of the asymptotic and numerical solutions for ω = 0.1, k2 = k3 = π/2 (left), ω = 0.4, k2 = k3 = π/2

(central) and ω = 0.4, k2 = −π/2, k3 = π/2 at different R. Solid lines: the asymptotic solutions; dashed lines: R = 500;
dash-dotted lines: R = 2000. The thin horizontal lines mark the position of the wall (corresponding to η̂ = − ln(ωR)) for R = 2000.

disturbance is proportional toei(K1X−K2Y +k3z−ωt) +c.c., whereω, K2 andk3 are real. Using the relation between(x, y)
and(X, Y ) shows that the far-field condition is given by (3) but with

k2 = K2 cos θ + ω
[√

b2
1 + 4ω2/R2 + b1

]−1/2

sin θ + i
R

2

{[√
b2
1 + 4ω2/R2 + b1

]
−

√
1 + 1/R2

}
sin θ, (6)

whereθ = tan−1(1/R). Now sincek2 is a complex number with=(k2) > 0, the amplitude of the componente−ik2y in
(3) increases exponentially in the wall-normal direction. This is a significant difference from the conventional continuous
spectra. Thus neither a temporal nor a spatial continuous mode represents the entrainment of a free-stream vortical
disturbance at a finite R. In the limitR� 1, the three boundary-value problems are equivalent to leading order.

A SAMPLE OF NUMERICAL RESULTS

The boundary-value problems consisting of the O-S and Squire equations, (1) and (2) with the far-field conditions (3),
are solved numerically. Fig.1 compares the eigenfunctions of spatial/temporal continuous modes with the distribution of
an entrained vortical disturbance; for brevity, only the real part of theu-component is shown. For a very lowR, e.g.
R = 20, the three are noticeably different. At a highR, i.e. R = 500, the entrained disturbance and the spatial mode are
indistinguishable, but the temporal mode is merely qualitatively similar and an appreciable quantitative difference exists.
An important feature is that for smallω the streamwise velocity in the boundary layer is much larger than the magnitude
of free-stream vortical disturbances. This is the key reason why longitudinal streaks appear in the viscous region of the
asymptotic boundary layer. In the limitωR � 1, the entrained disturbance concentrate in the edge layer, where an
asymptotic solution may be constructed. Forω = O(1), the perturbation in the edge layer is comparable with that in the
free stream (Fig.2, central). ForR−1 � ω � 1, the streamwise velocity acquires a large amplitude (Fig.2, left) so that
streaks may appear in the edge layer. We also calculate the response induced by free-stream disturbances withk2 < 0
(Fig.3, right). Interestingly, the response turns out to be much stronger than fork2 > 0.


