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Abstract We argue that d’Alembert’s paradox (1749) is still unresdl¥or very large Reynolds number flows. Prandtl (1904) assum
that there exists a viscous boundary layer attached to thieawa predicted that the drag force dissipates energy theie rate
proportional toRe™ /2. Kato (1984) proved that, in the limit of infinite Reynoldsminer, the energy dissipation rate tends to zero
if and only if the solution of the Navier-Stokes equation wenges towards the solution of the Euler equations (withstmae initial
data) and then occurs in a very thin boundary layer of thiskrm@oportional toRe~'. By performing direct numerical simulations
of a dipole crashing into a wall we show that Kato's scalingnisre appropriate than Prandtl’s scaling as soon as the boyihayer
detaches from the wall.

MOTIVATION

We propose to revisit the problem posed by Euler in 1748 ferRhize of Mathematics set by the Prussian Academy
of Sciences concerning the resistance that fluid flows exesntid bodies. In 1749 d’Alembert sent a contribution to
this problem, where he proposed a partial differential #qngwhich was actually the precursor of Euler's equation)
Unfortunately, d’Alembert was not able with it to explairetanergy dissipation observed in fluid flows and he thus raised
d’Alembert’s paradox [1].

In the 19th Century Saint-Venant, and then Navier and Stoelved this paradox for the laminar flow regime, by
showing the crucial role played by the fluid viscosity, whtbien lead to the Navier-Stokes equation published in 1822.
In 1904 Prandtl [2] introduced the notion of boundary layessuming all viscous energy dissipation takes place only in
the boundary layer, as long as it remains in contact with tiyyband proposed a methodology to resolve d’Alembert’s
paradox for flows around streamlined bodies, such as aeplamgs. To describe the viscous fluid flow in the boundary
layer, whose thickness is inversely proportional to theasguoot of the Reynolds number, he derived the Prandtl's
equation and succeeded to asymptotically match its solwibh that of an inviscid fluid flow governed by Euler’'s
equation outside the boundary layer.

RESULTS

In the work we address the following questions: does eneiggighte when the boundary layer detaches from the wall
and how does this happen? A generic flow we consider the casgatex-dipole impinging onto a wall (see Fig.), that
we study by Direct Numerical Simulation (DNS) at the highgsssible resolution, up tb63842, to see how solutions
behave in the vanishing viscosity limit (equivalent to Relgs numbergie tending to infinity).

Starting from the same initial flow and considering the samengetry, we compare the solutions obtained for Euler’'s
equation, Prandtl’s equation, and Navier-Stokes equatising different numerical methods (a Fourier spectraésud
combined with a volume penalization method to model thedsell [3], and a high-order finite volumes scheme, with
no-slip boundary conditions). In the vanishing viscosityil, we observe the formation of a boundary layer of thicksne
scaling asRe~'/? (as predicted by Prandtl's 1904 theory), until a certairetirp, where the boundary layer suddenly
collapses down to a thickness at least as finBas'. The Prandtl equations cease to be validtfeending tot p, which
manifests itself by the formation of a finite time singubarih their solution. Fort > tp, the boundary layer rolls up
into a structure which detaches from the wall and, in acamedavith a theorem of Kato [5], dissipates a finite amount of
energy even at vanishing viscosity [4].

We isolate two regions where energy is actually dissipategion A, a vertical slab inside the fluid domain, and region
B, a square box around the center of the main structure tisaddtached from the wall at= 0.495 (dotted box in Fig. ,
right). The energy dissipation rate is integrated respelgtiover the domain A or B and plotted verstis in Fig. (left).

It can be seen that in both cases the dependené&drecomes weak foRe > 2000.

We show the evolution of the energy dissipation rate aloregtkelected trajectories f@e = 3940 (Fig. , right). The first
striking feature is that it displays a strong maximum for fparticles which start from the wall (green and red curves),
occurring when they are still in region A. In contrast, thegdittle dissipation along the third trajectory (blue cajy
which starts away from the wall and never enters region Aagdritimes, energy dissipation goes back to much smaller
values for one of the trajectories that approached the wedl ¢urve), while it is still one order of magnitude larger fo
the other one (green curve), because the particle is trappete the strong vortex produced at the wall (correspandin
to region B at = 0.495).
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Figure 2. Left: Instantaneous energy dissipation as a functioRefat ¢ = 0.495 in regions A and B (see text). Right: Energy
dissipation rate versus particle positiam (¢), z2(t)) for ¢t € [0.3,0.495] along three Lagrangian trajectories, /¢ = 3940. The
circles indicate the positions at= 0.3.
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