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ESTIMATION OF TURBULENCE-DEVELOPMENT BY A MULTIFRACTAL THEORY

Toshihico Arimitsu1, Naoko Arimitsu 2, Kohei Takechi 3, Yukio Kaneda 4 & Takashi Ishihara 5

1Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
2Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Japan

3Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
4General Education Center, Aichi Institute of Technology, Toyota, Japan
5Graduate School of Engineering, Nagoya University, Nagoya, Japan

Abstract It is shown for the first time how the degree of development in turbulence, i.e., if it is fully developed or if not how much
developed, can be estimated by the multifractal theory called multifractal probability density function theory (MPDFT) [1]. Precise and
self-consistent analyses of 40963 DNS turbulence [2] by means of MPDFT reveal that the turbulence with Rλ = 675 is in the fully
developed turbulent state, but that the one with Rλ = 1132 is not fully developed yet. The degree of turbulence-development of the
latter is estimated.

BACKGROUND

It is known that, for small value ν, the Navier-Stokes (N-S) equation

∂~u/∂t+ (~u · ~∇)~u = −~∇p+ ν∇2~u (1)

for an incompressible fluid (~∇ · ~u = 0) is invariant under the scale transformation ~x→ λ~x with the rescaling of velocity
field ~u → λα/3~u, of time t → λ1−α/3t and of pressure p → λ2α/3p with an arbitrary real number α. Here, ν is the
kinematic viscosity; ~u is the velocity field; p is the pressure of fluid per unit mass. In treating an actual turbulent system,
the value of ν is fixed to a finite non-zero value unique to the fluid prepared for experiment. It is assumed that for high
Reynolds number the singularities responsible for the turbulent motion of fluid distribute themselves in a multifractal way
in real physical space [3]. This distribution of singularities may produce intermittent fluid motion of turbulence to which
we refer as a coherent turbulent motion. The dissipation term ν∇2~u in the N-S equation is interpreted as a term violating
the invariance under the scale transformation. This violation may produce an incoherent fluctuating motion of fluid.
A&A model within MPDFT [1] assumes that the distribution of singularities is specified by Tsallis-type PDF [4], say
P (n)(α), for stochastic singularity exponents α, and that PDF Π(n)(εn) for the stochastic singular quantity such as the
energy dissipation rates εn can be divided into two parts as

Π(n)(εn) = Π
(n)
S (εn) + ∆Π(n)(εn) (2)

(see Fig. 1 (a) and (b)). The first term, describing the coherent turbulent motion, is specified by the Tsallis-type PDF
through the relation [5]

Π
(n)
S (εn)dεn = Π̄

(n)
S P (n)(α)dα (3)

(see [1] for the expression of Π̄
(n)
S ). The second term represents the contribution from the incoherent fluctuating fluid

motion. The stochastic energy dissipation rates

εn = εn(α) = ε0(`n/`0)α−1 (4)

which reveal singular intermittent behavior in the limit `n/`0 → 0 for α < 1 are obtained by coarse-graining the micro-
scopic dissipation rates inside the region of diameter `n. The normalizations of the PDFs are given by

∫∞
0
dαP (n)(α) = 1

and
∫∞
0
dεnΠ(n)(εn) = 1.

Since turbulence is a typical system producing fat-tail PDFs for those physical quantities revealing singular behavior, we
divide the fat-tail PDF Π(n)(εn) for energy dissipation rates into two parts, i.e., the center (cr) and tail (tl) parts,

Π(n)(εn) = Π(n)
cr (εn) + Π

(n)
tl (εn) (5)

(see Fig. 1 (c)). The center part PDF Π
(n)
cr (εn) for εn ≤ ε∗n and the tail part PDF Π

(n)
tl (εn) for εn ≥ ε∗n are connected at

εn = ε∗n. It is reasonable to assume that, for the tail part PDF Π
(n)
tl (εn), one can neglect in high precision the contribution

from the second correction term in (2). Under this assumption, we put ∆Π(n)(εn) = 0 for εn ≥ ε∗n. To the center part
PDF Π

(n)
cr (εn), both coherent and incoherent motions contribute (see [1] for details).



Figure 1. Two kinds of divisions of PDF Π(n)(εn). The division (2) is shown in (a) and (b), respectively, on linear and log scale
in the vertical axes. Another division (5) is presented in (c) on log scale. ε∗n is the connection point. The open circles represent an
experimental PDF for energy dissipation rates. The contribution of ∆Π(n)(εn) to the tail part Π

(n)
tl (εn) is negligibly small.

ANALYSIS OF 40963 DNS

Since the stochastic quantities εn for energy dissipation rates are obtained by coarse graining the microscopic local
dissipation rates in the region with diameter `n as mentioned before, the energy dissipation rate averaged with Π(n)(εn),
i.e.,

〈〈εn〉〉 =

∫
dεn εnΠ(n)(εn) ≡ ε, (6)

is constant independent of `n. On the other hand, the mean value

〈εn〉 =

∫
dα εn(α)P (n)(α) (7)

which takes care of the contribution originated from the coherent turbulent motion is related to the exponent ζ3 of structure
function through the relation

〈εn〉 ∝ (`n/`0)ζ3−1. (8)

For the fully developed turbulence, the system is in the stationary state in which energy is transferring, hierarchically,
from the largest eddies with diameter ∼ `0 to the smallest eddies with diameter about the order of the Kolmogorov length
η with the rate 〈εn〉 independent of the diameter `n of eddies as described in the energy cascade model. In this case,
ζ3 = 1. When turbulence is not fully developed, it does not reach its stationary state yet, and 〈εn〉 can be dependent on
`n, i.e., ζ3 6= 1.
The precise analyses of 40963 DNS [2] (ε = 0.0831 for Rλ = 675 and ε = 0.0752 for Rλ = 1132) by means of MPDFT
showed that the turbulence with Rλ = 675 is in the fully developed turbulent state, but that the one with Rλ = 1132 is
not fully developed yet. We obtained, self-consistently, the value of the exponent for Rλ = 1132 to be ζ3 = 0.58, i.e., the
`n-dependence of 〈εn〉 turns out to be

〈εn〉 ∝ (`n/η)−0.42. (9)

The averaged energy dissipation rate 〈εn〉 associated with the coherent turbulent motion is smaller for larger eddies.
It means that the turbulence with Rλ = 1132 does not have enough number of larger eddies to be a fully developed
turbulence, i.e., the integral length may not reach its maximum value.
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