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Abstract Plane Couette flow is a paradigmatic example of wall-bounded shear flow experiencing a direct transition to/from turbulence.
The generic features of this transition are discussed using well-resolved numerical simulations in a domain wide enough to undergo
laminar-turbulent patterning. Whereas the transition is clearly discontinuous at the global stability threshold Rg, results at the upper
threshold Rt – where turbulence becomes featureless – suggest that the transition is also discontinuous, though less dramatically.

Plane Couette flow, the flow developing between two parallel plates moving in opposite directions, is a typical example
of wall-bounded shear flow experiencing a direct transition to turbulence. The transition is marked by a coexistence of
turbulent and laminar flow in spatially distinct domains. On general grounds this coexistence is observed in some range
of Reynolds numbers [Rg, Rt], called transitional. Below Rg, global stability is achieved and laminar flow is recovered
in the long term, whatever the initial state, possibly at the end of a very long turbulent transient. Above Rt, an essentially
featureless turbulent regime is observed.
The definitions of Rg and Rt have a somewhat conceptual favor and there is still some debate about their exact value in
each case. The situation has been clarified recently for pipe flow, at least for Rg which was found to correspond to when
puff decay is preempted by puff splitting so that turbulence can be sustained [1]. Plane Couette flow has already been
much studied, both experimentally [2, 3], numerically [4, 5, 6], and via modeling [7, 8]. The corresponding Reynolds
number is defined as R = Uh/ν where U is the speed of the plates, 2h the distance between them, and ν the kinematic
viscosity of the fluid. Using this definition, from laboratory experiments, one getsRg ≈ 325 [2] and Rt ≈ 410 [3]. Along
the transitional range, oblique turbulent bands are observed, reminiscent of barber pole turbulence in circular Couette
flow [3]. Different values have been proposed for Rg and Rt, illustrating some sensitivity to the methodology.
The time span during which the flow is studied plays an important role and can easily lead to some misestimation of Rg

since one has to distinguish between sustained and long-lived, with issues similar to what is observed for pipe flow [1]. On
the basis of under-resolved simulations, I suggested to understand the decay/growth of turbulence in the neighborhood
of Rg as the result of the random accumulation of local chaotic fluctuations either breaking bands already formed or
controlling the growth of germs [6, c,d], well in line with analogy to the first-order phase transitions put forward by
Pomeau [9], and leading to a definition of Rg in terms of extreme value theory [10].
The behavior at the putative threshold Rt is less clear. A continuous emergence of the pattern seemingly stems from
experimental observations for circular Couette flow [3] but the case of plane Couette flow is less well documented,
quantitatively speaking. From [4, c], a similar conclusion can be drawn but the bifurcation would take place at a somewhat
larger value of Rt around 440, which may not easily be reconciled with the observation of intermittent reentrance of
the featureless regime observed by the same authors [4, a] (and also in the under-resolved case [6, b]). Based on the
data presented below, I suggest that, in contradistinction with the case of circular Couette flow, the transition might be
discontinuous. The mentioned reentrance would then be due to the local stability of both featureless turbulence and the
banded state, each involving intense fluctuations generated by chaos with large deviations induced by their cumulative
effects, like in the neighborhood of Rg.
Here, I report on numerical simulations performed in the transitional range, more specifically in the vicinity of Rt, using
Gibson’s software CHANNELFLOW [11] in a rectangular domain (Lx, Lz) = (104, 64) with periodic boundary conditions.
At variance with our previous studies [6], the present computations are appropriately resolved for the considered Reynolds
number range, with Ny = 33 Chebyshev polynomials in the wall-normal direction, Nx = 3Lx and Nz = 6Lz Fourier
modes in the wall-parallel directions (that is N ′

x = 2Lx and N ′
z = 4Lz de-aliased modes or, in physical space, δx = 0.5

and δz = 0.25, comparable to values in [5]).
Various observables can be used to study the transition from a global point of view. An already meaningful information can
be obtained from the measure of the distance to laminar flow [6, a], i.e. the root-mean square volume average ∆ ≡ ṽrms

of the perturbation velocity ṽ = v − yx̂, where x̂ is the unit vector along the streamwise direction. Visual inspection
of the local disturbance energy 1

2 ṽ
2 averaged over the gap (or a given half-gap) may ease the identification of patterns

observed in the transitional range. Assuming that a well-defined pattern develops, the amplitude of its dominant Fourier
mode is the most obvious order parameter (see [4, c] and [6, b]). Here Fourier decomposition of the local perturbation
energy averaged over the upper half-gap (0 ≤ y ≤ 1) has been used. Equivalent results are obtained using the lower
half-gap (−1 ≤ y ≤ 0), both slightly better than when considering the flow pattern at a given y (more noisy) or averaging
over the full-gap (less noisy but less selective due to the turbulence overhang in the bands [6, b]).
The experiment was started with random initial conditions atR = 470 well above the expected value ofRt. The Reynolds
number was subsequently decreased by steps. The initial condition for a given value ofRwas taken as the state reached by
the flow after equilibration at the previous one, i.e., about 500 time units (h/u) except forR ≈ Rt when the pattern is about
to form or formed but fluctuating, which asked for adapted equilibration durations. Animations featuring the dynamics



of the perturbation flow field can be downloaded as explained in [12]. Details given in the caption of Fig. 1 strongly
suggest that the transition at Rt is discontinuous (curiously as observed in the conceptual Turing model discussed in [8])
while submitted to strong noise of intrinsic origin (local chaos) inducing orientation changes and reentrance of featureless
turbulence via large deviations. All this prompts to further empirical studies in larger domains (presently underway) and
the development of realistic models curing the limitations of our previous attempt [7].

References

[1] K. Avila et al. The onset of turbulence in pipe flow. Science 333:192–196, 2011.
[2] S. Bottin et al. Discontinuous transition to spatiotemporal intermittency in plane Couette flow. EPL 48:171–176, 1998.
[3] A. Prigent et al.. Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89:014501, 2002.
[4] (a) D. Barkley, L.S. Tuckerman. Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94:014502, 2005.

(b) L.S. Tuckerman, D. Barkley. Patterns and dynamics in transitional plane Couette flow. Phys. Fluids 23:041301, 2011.
(c) D. Barkley, L.S. Tuckerman, O. Dauchot. Statistical analysis of the transition to turbulent-laminar banded patterns in plane Couette flow.
J. Phys. Conf. Ser. 137:012029, 2008.

[5] Y. Duguet, P. Schlatter, D.S. Henningson. Formation of turbulent patterns near the onset of transition in plane Couette. J. Fluid Mech. 650:119–
129, 2010).

[6] (a) P. Manneville, J. Rolland. On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane
Couette flow. Theor. Comput. Fluid Dyn. 25:407–420, 2011.
(b) J. Rolland, P. Manneville. Ginzburg-Landau description of laminar-turbulent oblique band formation in transitional plane Couette flow. Eur.
Phys. J. B 80:529–544, 2011.
(c) P. Manneville. On the decay of turbulence in plane Couette flow. Fluid Dyn. Res. 43:065501, 2011.
(d) P. Manneville. On the growth of laminar-turbulent patterns in plane Couette flow. Fluid Dyn. Res. 44:031412, 2012.

[7] M. Lagha, P. Manneville. Modeling transitional plane Couette flow. Eur. Phys. J. B 58:433–447, 2007.
[8] P. Manneville. Turbulent patterns in wall-bounded flows: A Turing instability? EPL 98:64001, 2012.
[9] Y. Pomeau. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23:3-11, 1986.

[10] D. Faranda, V. Lucarini, P. Manneville. Breakdown of turbulence in plane Couette flow. Can extreme fluctuations be used to understand critical
transitions?’. European Geosciences Union General Assembly, Geophysical Research Abstracts 14:EGU2012-5458-2, 2012.

[11] J.F. Gibson. web site, http://channelflow.org, 2011.
[12] http://www.off-ladhyx.polytechnique.fr/people/pops/CF_HR/readme.pdf (QuickTime files description).

320 340 360 380 400 420 440 460 480

0.20

0.25

0.30

0.35

0.15

R

di
st

an
ce

 
 to

 la
m

in
ar

 fl
ow

b
a

featureless
turbulence

sustained
pattern

transient pattern

350 370 390 410 430 450
0

5

10

15

20

25

30

R

or
de

r p
ar

am
et

er

0 5e3 10e3 15e3 20e3 25e3

0.27

0.28

0.29

0.30

0.31

0.32

t

 

 

R=400

defects

two weak
left oriented bands

one weak
left oriented band

featureless

one strong
right oriented band

right oriented
band

staggeredone strong
right oriented band

0 5e3 10e3 15e3 20e3 25e3

0.27

0.28

0.29

0.30

0.31

0.32

t

R=405

one
well formed

band

Figure 1. Top-left: Bifurcation diagram displayed in terms of the time-average of ∆ as a function of R; values at (a) and (b) correspond
to averages extrapolated from specific intermittent configurations: mostly featureless at the beginning of time series for R = 400

(bottom-left) and well-formed band around t = 12500 for R = 405 (bottom-right), respectively.
Top-right: Order parameter (arbitrary units) as function of R; at R = 390 (star) an orientation change was observed without significant
variation of the order parameter; open circle at R = 395 corresponds to a (meta)stable band exceptionally obtained by increasing R

from R = 390; asterisks at R = 400 and 405 give the value of the order parameter, conditioned by the fact that a single band is present.
Bottom: Distance ∆ to laminar flow as a function of time (in units of h/u) for R = 400 (left) and R = 405 (right).


