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DEFORMATION OF TETRAHEDRA IN TURBULENCE
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Abstract The evolution of multi-particle structures provides insight into turbulent mixing and turbulence dynamics. In this talk, we
discuss experimental and numerical findings of the deformation of tetrahedra in turbulence, both forward and backward in time. For
short times, our theoretical analysis gives a result in close agreement with experimental and numerical data, and shows quantitatively
the mechanism that breaks the symmetry in time. We also extend our analysis to turbulent flows with dilute polymer additives.

INTRODUCTION

It has long been known that in turbulent flows velocity gradients tend to flatten isotropic volumes [22, 1, 4] which is
responsible for the enhancement of turbulent transport and mixing. To extend the analysis to the inertial range, over which
the velocity field is not differentiable, a variety of models have been proposed to provide effective “coarse-graining” (see
e.g., a recent review [13]). Among those models, the “tetrad approach” [5] is very promising as it requires only information
from four fluid particles forming a tetrahedron, a minimum configuration required to describe a three-dimensional flow.
An attractive feature of this approach is that the shape deformation of the tetrahedron is tightly related with the “perceived
velocity gradient” of the turbulence at the scale of the tetrahedron [25, 17]. Experiments and numerical simulations show
that, similar to previous results in the differentiable range, initially isotropic tetrahedra with their size in the inertial range
of turbulent flows also deform into coplanar structures [18, 3, 12, 24, 8]. Quantitative understanding of this deformation
process, to our knowledge, is still missing. Moreover, it has been shown that for the separation of two particles in
turbulence, the separation rate when measured forward in time is different from that measured backward in time [19, 2].
Therefore it is natural to ask how would the shape of the tetrahedra deform in a frame moving backward in time.
Answers to these questions are not only directly related to turbulent mixing and transport, but also provide new insight to
the understanding of inertial range dynamics of turbulence.
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Figure 1. Time evolution of the averaged eigenvalues 〈λa(t)〉, normalized by the averaged radius of gyration 〈R2(t)〉, for tetrahedra
with different initial edge lengths r0. Time has been normalized by t0 = (r20/ε)

1/3, the Kolmogorov time corresponding to eddies
of size r0. Left: Experimental data (E), taken at Rλ=690 with a scale separation of L/η=2300, and DNS data (D), taken at Rλ=430
with L/η=480. Right: Experimental data with 10ppm polymer concentration (P), taken at Rλ = 370, L/η=936. The polymer energy
dissipation rate εpol was derived from < δ~u · δ~a >t=0= −2εpol and differs from the pure water case.

DEFORMATION OF TETRAHEDRA IN NEWTONIAN FLUID TURBULENCE

We used data from Lagrangian Particle Tracking experiments to investigate the deformation of initially (nearly) isotropic
tetrahedra in a von Kármán water flow between counter-rotating baffled disks at Taylor microscale Reynolds number
Rλ = 690 [14]. The tetrahedra we analyze have an initial edge length r0 well in the middle of the inertial range.
We describe the shape of the tetrahedra by the three eigenvalues λa(t), a = 1, 2, 3, of the shape tensor, which are
intimately connected to the principal values of the moment of inertia of the tetrahedron [5, 18, 8]. With this definition,



∑3
a=1 λa(t) = R2(t), where R2(t) is the radius of gyration of the tetrahedron. We further arrange the eigenvalues such

that λ1 ≥ λ2 ≥ λ3. The case λ1 = λ2 = λ3 represents an isotropic tetrahedron, λ1 ≈ λ2 > λ3 describes a flattened
co-planar object (pancake-like shape), while λ1 > λ2 ≈ λ3 describes an elongated co-linear object (needle-like shape).
We complement our experimental results with analysis of the DNS data at Rλ = 430 obtained from the JHU turbulence
database [9, 26].
The evolution of λa(t)/R2(t) from both experiments and DNS are shown in Figure 1 (left), from which one can clearly
see that the initially (nearly) isotropic tetrahedra deform into slightly elongated pancake-like structures at later times. For
r0 in the inertial range, the deformation process is self-similar if time is normalized by t0 = (r20/ε)

1/3, the Kolmogorov
time corresponding to eddies of size r0. Furthermore, a clear asymmetry between the evolution forward and backward in
time can be observed. The solid line shows our analytical result for the shape deformation, based on the tetrad approach.
For short times, it is in close agreement with the experimental and numerical data and reveals the mechanism that results
in the forward-backward asymmetry.

THE EFFECT OF POLYMER ADDITIVES

The addition of a small amount of flexible long-chain polymers into a fluid can drastically change its flow properties,
see e.g. the elastic turbulence [7] and the drag reduction phenomena [21]. The polymer-turbulence interaction has been
studied intensively [11, 20, 16] and the effects of polymers on different scales and on the energy cascade have been
observed [10, 6, 15]. We report here the deformation of tetrahedra in a turbulent flow of dilute polymer solutions as an
attempt to investigate the influence of polymers on turbulent mixing. Details on the experimental setup and the polymer
data can be found in [23]. Comparison with the analytical result for Newtonian flows (see Figure 1, right) shows that the
effect of polymers on the turbulence energy cascade need to be taken into account when analyzing the shape deformation.
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