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Abstract The energy budget for thermally-equilibrated Rayleigh–Bénard convection is developed theoretically, with explicit consid-
eration of the role of available potential energy. The analysis shows that about half of the available potential energy generated by
the thermal forcing is dissipated viscously by turbulence at high Rayleigh number. The remainder is consumed by diffusion acting to
homogenise the temperature field. The results of direct numerical simulations of convection at Rayleigh numbers ranging from 108 to
1013 are also presented in support of this analysis. An important conclusion is that Rayleigh-Bénard convection may be viewed as a
highly efficient mechanism of turbulent mixing in a stratified fluid.

THEORY

We describe the energetics of a volume of fluid heated from below and cooled from above. For simplicity the fluid is
assumed Boussinesq with a linear equation of state, to which the generalised energetics framework shown schematically
in Figure 1 may be applied (refer to [1] for a detailed derivation). The forms of mechanical energy considered are kinetic
energy Ek and potential energy, decomposed into components of available potential energy Ea and background potential
energy Eb (i.e. the potential energy that the fluid volume would have following an adiabatic relaxation of the density
field to a state of no motion). The role of available potential energy appears to have been largely overlooked in previous
energetics analyses of Rayleigh-Bénard convection.
The volume-integrated rates of conversion between the various forms of mechanical energy (Figure 1) are the buoyancy
fluxes, Φz and Φ′

z , viscous dissipation, ε and ε′, irreversible mixing of the density field, Φd, shear production, ΦT , and
working by boundary stresses, Φτ and Φ′

τ . The overbar and prime operators represent the decomposition of a given
quantity into suitably defined ‘mean’ and ‘fluctuating’ components. The conversion rates Φb2, Φb1 and Φi are associated
with thermal forcing at the boundary. In physical terms Φb2 represents the generation rate of available potential energy by
maintaining a density field that is not in its adiabatically relaxed state, and Φb1 gives the volume integrated rate of change
of potential energy (and available potential energy) by net heating/cooling at each level. Φi corresponds to the rate at
which the centre of mass of the volume would be raised or lowered by molecular diffusion if there was no convection.
A number of energy conversions in Figure 1 can be in either direction, and an additional light grey arrow denotes the
direction defined to be positive. For Rayleigh-Bénard convection, Φi and Φb1 are expected to be negative and positive,
respectively.
Attention is restricted here to thermally-equilibrated Rayleigh-Bénard convection, for which there is no net heating of the
fluid volume. In this case, time-averaging and calculation of fluctuations about a time-average are closely related to the
overbar and prime operators, respectively. In the thermally-equilibrated state, the amounts of mechanical energy present
in a given form do not evolve systematically in time. Hence, consideration of the background potential energy in Figure
1 requires that Φd = Φb2. In physical terms, the tendency of irreversible mixing to homogenise the range of densities in
the flow must be exactly offset by the action of thermal forcing to maintain that range. If working by boundary stresses
is neglected, the kinetic energy budget requires that the total viscous dissipation ε + ε′ balances the net buoyancy flux
Φz + Φ′

z . The available potential energy and internal energy budgets in turn require that the total viscous dissipation is
also equal to both Φb1 and Φi (an equivalent result was obtained by [2]).
The mathematical expressions for Φb1 and Φb2 [1] are used to show that these two conversion rates are equal, suggesting
that Rayleigh-Bénard convection can be characterised by a mixing efficiency η = Φd/(Φd + ε + ε′) that evaluates to 1/2
(when the working by boundary stresses is assumed negligible). This finding suggests that convective processes represent
highly efficient mechanisms of mixing in a stratified fluid, a claim also supported in a recent study [3] showing that η → 1
for horizontal convection at high Rayleigh number.

DIRECT NUMERICAL SIMULATIONS

The energy conversion rates in Figure 1 were calculated in a series of direct numerical simulations of Rayleigh-Bénard
convection at Rayleigh numbers between 108 and 1013. The simulations solve the continuity, momentum and temperature
equations in three-dimensions using a mixed spectral/finite difference algorithm and a non-uniform grid in the vertical
direction. The boundary conditions on the horizontal boundaries are no-slip and imposed temperature (10 ◦C and 40 ◦C
on the upper and lower boundaries, respectively). The domain is periodic in the horizontal directions and a variety of
aspect ratios were examined. The working fluid is Boussinesq with properties corresponding to water nominally at 25 ◦C.
The results presented here are based on a period of simulation after a thermally-equilibrated state had been reached.
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Figure 1. Schematic summary of the energetics framework for a volume of Boussinesq fluid with a linear equation of state (after [1]).
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