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Abstract We address the question whether one can identify instantons in direct numerical simulations of the stochastically driven
Burgers equation. For this purpose, we first solve the instanton equations using the Chernykh-Stepanov method [Phys. Rev. E 64,
(2001)]. These results are then compared to direct numerical simulations of the stochastic Burgers equation by extracting prescribed
rare events from massive data sets of realizations. Using this approach we obtain the entire time history of the instanton evolution
which allows us to identify the different phases predicted by the direct method of Chernykh and Stepanov with remarkable agreement.
These results confirm the relevance of the instanton in turbulent flows.

Instantons for the stochastic Burgers equation
Understanding intermittency in turbulent flows is still one of the open problems in classical physics. More than 15 years
ago, for certain systems like the problem of passive advection and Burgers turbulence the door for attacking this issue
was opened by getting access to the probability density function to rare and strong fluctuations by the instanton approach
[1–4]. Here, we concentrate on rare fluctuations in Burgers turbulence. For that case, Gurarie and Migdal [2] introduced
the instanton approach and were able to calculate the instanton contribution to the right tail of the velocity increment
probability distribution function (PDF). In succeeding work, Balkovsky et al. [4] were able to characterize the left tail of
the increment PDF making use of the Cole-Hopf transformation [5, 6]. These analytical results were confirmed by direct
numerical solution of the instanton equations by Chernykh and Stepanov [7].
The question remained unanswered whether one can observe or identify the instanton in numerical simulations of the
stochastic Burgers equation. We present evindence that already at moderate Reynolds numbers the instanton can be
identified in data sets of simulations of the stochastic Burgers equation. This gives a positive answer to this important
question. In particular, we show by introducing a particular filtering technique that all phases of the instanton evolution
can be recovered from data sets of simulations of the stochastic Burgers equation.
We consider the stochastically driven Burgers equation given by

ut + uux − νuxx = φ (1)

with a noise field φ that is δ-correlated in time and has finite correlation χ in space with correlation length L. Using
the functional path integral introduced by Martin-Siggia-Rose/Janssen-de Dominicis [8–11], the PDF of the velocity
gradients ux(t = 0, x = 0) can be written in terms of a path integral over the velocity field u and auxiliary field p,
with a corresponding effective action. The saddle point (instanton) equations for the fields (uI ,pI ) yielding the largest
contribution to the path integral for strong gradients are then given by

ut + uux − νuxx = −i
∫
χ(x− x′)p(x′, t)dx′ (2a)

pt + upx + νpxx = 4iν2Fδ(t)δ′(x) . (2b)
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Figure 1. Comparison of the filtered velocity field (left) and the instanton field (right) as a space-time contour plot.
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Figure 2. Comparison of the instanton field (solid) to stochastic simulations with varying hit percentages (≈ 10% (dashes), ≈ 0.5%

(dots), ≈ 0.05% (small dots)) for t = 0 (left) and t = −1.75 (right). Agreement with the instanton approach increases with decreasing
hit percentage.

These equations can be solved numerically using an iterative algorithm proposed [7]. We also note the similarity of the
system (2) to equations that arise in the context of transition probabilities [12, 13].

Extracting the instanton
In order to provide a sufficient data set for the extraction of the instanton from simulations of the stochastic Burgers
equation (1), we conducted the following numerical experiment: We started the integration of the stochastic Burgers
equation from zero initial conditions for the velocity field u(t = tmin, x) = 0 at a large negative time tmin up to the final
time t = 0. This single experiment was repeated ≈ 107 times using the 64 CUDA Tesla 1060 graphics on the Bochum
GPU Cluster and the 96 CUDA Fermi 2050 graphics cards on the CUNY GPU Cluster. The total simulation length
obtained by this parallelism corresponds to ≈ 108 integral times. In this data-set, we scanned for events with a prescribed
velocity gradient and averaged over them, after shifting the event to the origin. We thus obtain an ensemble average for the
velocity 〈u(t, x)〉 and the force 〈φ(t, x)〉 in space and time. Thus, for sufficiently strong velocity gradients ux(0, 0) = a,
the averaged solutions 〈u(t, x)〉 and 〈φ(t, x)〉 supposedly coincides with the instanton solution of (2). Fig. (1) shows the
filtered field 〈u(t, x)〉 (left) and the instanton field uI(t, x) (right). Although the filtered field shows a slightly shorter
extent in time, the congruence is clearly visible. The rareness of the filtered events has a strong impact on the agreement
between the instanton approximation and the full stochastic simulation. In order to demonstrate the varying resemblance to
the instanton approximation, we alter the probability of reaching a prescribed velocity gradient by changing the kinematic
viscosity ν. Fig. (2) shows the filtered field 〈u(t, x)〉 and the instanton field uI(t, x) for three different hit percentages.
As the rareness of the event increases, accordance with the instanton grows considerably. Especially the velocity gradient
in the origin is only reproduced when the events are rare.
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