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NONLINEAR VORTEX STRUCTURES IN BOUNDARY LAYER FLOW
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Abstract We report various nonlinear flow structures for a parallel boundary layer flow, some bifurcate directly from the linearly  
unstable Blasius flow, others are obtained through an artificial body force F(y,z), of amplitude fA, using ideas from the self-sustaining 
process (F. Waleffe. On a self-sustaining process in shear flows. Phys. Fluids 9, 883-900, 1997). The relevant solutions are found 
by continuing the forced state and smoothly reducing the external force to achieve solutions of the unforced Navier-Stokes equations. 

Introduction
Making progress  on the understanding of  a  flow in a  boundary layer  is  of  considerable interest  since many flow  
applications or systems appear in a turbulent flow state. A turbulent boundary layer flow imposes a higher resistance on 
a body compared to the laminar counterpart, hence reducing this hindrance is of great importance for saving energy, e.g.  
the fuel-consumption of a vehicle. According to the classical linear theory, first undertaken by Tollmien [1] and later by 
Schlichting [2], the first  phase of the turbulence transition, at  low free stream turbulence level,  is initiated  by the 
exponential  amplification of what are now called two-dimensional Tollmien-Schlicting waves at  Reynolds number 
close to 300 (based on the boundary layer scale δ=(νx/Uꝏ)½, the free-stream speed Uꝏ and the kinematic viscosity ν). 
To describe the turbulent stage the linear theory needs to be abandoned for nonlinear three-dimensional solutions, also 
called exact coherent structures (ECS). These nonlinear solutions are limit cycles in phase space in the form of large 
scale flow patterns with statistics similar  to  those of numerical  turbulence [3,4].  This implies that  when collected 
together their statistics can be used as a foundation for reconstructing turbulent flows. Therefore, finding a large set of 
these solutions is needed to provide us with the essential elements for understanding the mechanics of chaotic flows and 
to set the basis for a dynamical-system-theory of turbulence.  Earlier studies have shown the importance of the exact 
coherent structures [5-7], and lead to a large effort on finding them in various flow configurations [8-13]. The fact that  
the exact coherent structures may describe parts of a chaotic flow has implications for future investigations on flow 
control for managing turbulence. 

Definitions
The flow over a flat plate in an isothermal incompressible boundary layer at zero angle of incidence is studied. The  
plate is considered to be infinite in the streamwise direction x and the spanwise direction z. The leading edge is situated 
at  x=0, and  y denote the vertical  coordinate.  The unit  vectors  are  i, j and  k and the velocity vector is  defined as 
v=ui+vj+wk represented by the streamwise, wall-normal and spanwise component respectively, the pressure as p and 
time t. The variables are non-dimensionalised using the uni-directional free-stream speed Uꝏ, density ρ and the length 
scale δ=(νx/Uꝏ)½. We search for solutions in the form of finite amplitude perturbations in a parallel Blasius boundary  
layer flow of the Navier-Stokes equations, they move at a phase velocity of ci and their periodicity in x and z is given by 
the streamwise wavenumber α and the spanwise wavenumber β. Their numerical expression is:
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The Ti is the classical Chebyshev polynomial, I=(-1)½ and the γ is the mapping of the truncated physical domain 0 ≤ y ≤ 
ymax  to  -1 ≤ γ ≤ 1.  The solutions discovered bifurcate either from an artificial flow state or from the unstable laminar 
Blasius flow U(y)i =fηi =(df(η)/dη)i. The function f(η) is governed by the well-known Blasius equation fηηη + ½ ffηη=0, 
where the coordinate η is the similarity variable having the formula η=y/δ. The total flow is v=kUi + u; the governing 
equations for the perturbation field are forced by a body force F(y,z) of amplitude fA and are defined as
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R
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For solutions bifurcating from the Blasius flow we have fA≡0. R is the Reynolds number defined as R=Uꝏ δ/ν. We have 
no-slip boundary conditions for u at the plate and asymptotic conditions at  y=ymax or uy

(bj)(y) + (b2α2+j2β2)½ u(bj)(y)=0, 
where  u(bj)(y) is  the function seen in the numerical  expression above. In  the free-stream we have uniform flow or 
v=(1,0,0). The coefficient  k is  an  amplitude which serves  to  maintain the uniform flow at  y=ymax constant  in  the 
presence of finite amplitude ECS [14]. Performing a linear stability analysis of U and mapping out the linear solutions 
in  α-R space  one  gets  the  neutral  curves  shown in figure  1.  To find solutions  bifurcating  from an  artificial  flow 
bifurcating
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Figure 1. Neutral curves of selected perturbations of spanwise wavenumbers  β=0-0.20. Increasing  β lowers (in  α), 
narrows and displaces (to larger Reynolds numbers) the envelope of the linearly unstable solutions, making it difficult 
to find solutions for β>0.20.

state we use the idea behind the self-sustaining process (SSP) [15] and force solutions by F(y,z). To find the relevant 
flow states the amplitude fA is gradually brought to zero yielding e.g. solutions such as those displayed in figure 2.

Figure 2. Mean velocity fields of the nonlinear ECS at Re=332 (low amplitude) and Re=390 (larger amplitude) for the 
streamwise and the spanwise wavenumber α=0.20 and β=0.45. The Blasius boundary layer thickness is situated at y=5.
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