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Abstract In this paper, a multiscale description of the Lagrangian velocity of the fluid particle is proposed. This is accomplished
by applying a Hilbert based technique, namely Hilbert-Huang Transform, to a DNS database with Reλ = 400. An inertial range is
observed on the frequency range 0.01 < ωτη < 0.1. The scaling exponents ζ(q) are then extracted without resorting the Extended Self
Similarity procedure. The measured ζ(q) is consistent with the multifractal prediction in the Lagrangian frame as proposed in [Biferale
et al., Phys. Rev. Lett. 93, 64502 (2004)].

INTRODUCTION

The statistical description of a tracer trajectory in turbulent flows still lacks of a sound theoretical and phenomenological
understanding [10, 11]. Presently, no analytical results linking the Navier-Stokes equations to the statistics of the velocity
increments, v(t+τ)−v(t), along the particle evolution are known. On the ground of dimensional arguments, scaling laws
are expected for time increments larger than the Kolmogorov dissipative time, τη , and smaller than the large-scale typical
eddy-turn over time, TL. Despite of the many numerical and experimental attempts (see more recent review paper [10]),
no clear evidence of scaling properties have been detected in the Lagrangian domain even at high Reynolds numbers.
Such a fact can be explained either invoking ultraviolet and infrared effects induced by the two cut-offs, τη and TL or by
a real pure breaking of scaling invariance, independently of the Reynolds number [5, 9]. Up to now, most of the attention
has been payed to the so-called Lagrangian Structure Functions (LSF), i.e. moments of velocity increments:

Sq(τ) = 〈|vj(t+ τ)− vj(t)|q〉, (1)

where for simplicity we have assumed isotropy and dropped any possible dependency of the l.h.s on the component of the
velocity field. Phenomenological arguments based on a ‘bridge’ relation between Eulerian and Lagrangian statistics [4]
predicts the existence of scaling properties also in the Lagrangian domain: Sq(τ) ∼ τ ζL(q) for τη � τ � TL, with ζL(q)
being related to the Eulerian scaling exponents, ζE(q), defining the scaling properties of velocity increments between two
points in the laboratory reference frame. Such relation has been well verified in the limit of very small time increments,
by studying the statistics of flow acceleration [4] or by using relative scaling properties [1], i.e. studying one moment
versus another one, a procedure known as ESS [3]. On the other hand, no clear evidence of direct scaling properties as a
function of τ has ever been detected (see [5, 9] for two recent papers about discussing this problem).

METHODOLOGY AND DATA

More recently, Huang et al. proposed a Hilbert-based methodology, namely Hilbert-Huang transform (HHT), to extract
scaling exponents from a given scaling time series [7, 8]. The HHT is a wavelet-like data-driven method to decompose
a given signal into a sum of Intrinsic Mode Functions (IMFs) without a priori basis, i.e., v(t) =

∑N
i=1 Ci(t) + rN (t),

in which Ci(t) is IMF and rN (t) is residual [6, 8]. The classical Hilbert spectral analysis is then applied to each IMF
mode to extract instantaneous frequency ω [6, 8]. This allows us to construct a pair of the extracted IMF modes and their
instantaneous frequency, i.e., [Ci, ωi] with i = 1, · · ·N [7]. This allows us to define a ω-conditioned Hilbert spectrum,
i.e., ωi = ω,

Lq(ω) =
N∑
i=1

〈Cqi |ω〉 ∼ ω
−ζ(q) (2)

in which ζ(q) is comparable with the scaling exponents provided by classical SF. This Hilbert method has been verified
for monofractal and multifractal processes, see more details in Refs. [7, 8].
The dataset considered here is composed by Lagrangian velocity trajectories in a homogeneous and isotropic turbulent
flow obtained from a 20483 (Reλ = 400) DNS simulation. The details of this database have been already described in



[2]. We analyze all the available ∼ 2 · 105 fluid tracer trajectories, each composed by N = 4720 time sampling of vj(t)
(where j = 1, 2, 3 denotes the three velocity components) saved every 0.1τη time units.

RESULTS AND DISCUSSION
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Figure 1. a) Comparison of the measured compensated second-order SF (solid line), Fourier spectrum (dashed line) and Hilbert
spectrum (circle). Note that only the Hilbert spectrum shows a nearly one decade plateau. b) the measured Hilbert spectra for q = 1 ∼
4, in which the solid line is the fitting on the range 0.01 < ωτη < 0.1. c) the ratio between the measured local slope ζ(q, ω) and the
scaling exponents ξM (q) provided by the multifractal prediction [4].

Figure 1 a) shows the measured compensated second-order statistics, i.e., S2(τ)(ετ)
−1, EL(f)ε−1f2 and L2(ω)ε

−1ω.
Note that the SF curve (solid line) is consistent with the ones reported in Refs. [5, 9]. Graphically, only the Hilbert
spectrum displays a plateau with two bottleneck effects respectively around τ/τη = 4 and τ/τη = 100. Figure 1 b) shows
the Hilbert spectrum Lq(ω) for q = 1 ∼ 4. Power law behavior is observed for all q on the range 0.01 < ωτη < 0.1,
corresponding to a time scale 10 < τ/τη < 100. This provides an experimental evidence for the validation of the
Kolmogorov-Landau theory with proper intermittent correction [4]. Figure 1 c) shows the ratio between the measured
local slope ζ(q, ωτη) and the scaling exponent ξM (q) provided by the multifractal prediction [4]. Quantitatively, the
measured scaling exponents ζ(q) agree very well with the multifractal prediction [7]. We list below the measured scaling
exponents for q we considered here. They are ζ(1) = 0.59 ± 0.06, ζ(2) = 1.03 ± 0.03, ζ(3) = 1.39 ± 0.10 and
ζ(4) = 1.70± 0.14, respectively.
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