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Abstract Simulations of liquid metal flows in channel and duct configurations under a strong magnetic field pose a difficult problem for
existing numerical methods. The main obstacle is the linear increase in number of modes required to resolve thin Hartmann boundary
layers with the intensity of the magnetic field B. To overcome this problem we developed a new approach to the numerical calculations
describing these flows. The solution of the flow is expressed in a base of eigenfunctions of the linear part of the governing equations
and its adjoint, We show that in this approach the computational cost does not depend on the thickness of boundary layer and therefore
it allows for performing calculations for high magnetic fields.

EQUATIONS

We consider a flow of liquid metal in channel configuration with the homogeneous magnetic field and impermeable,
electrically insulating walls located at z = ±1 in a low Rm regime. Under these assumptions the set of governing
equations can be expressed in dimensionless form:

∂u
∂t

+ P (u · ∇)u = ∆u− 1
Ha

∆−1∂zzu (1)

where Ha = LB
√
σ/ρν, called the Hartman number, represents the ratio of Lorentz to viscous forces and P denotes

orthogonal projection onto the subspace of solenoidal fields.

NUMERICAL METHOD

We express the solution of eq. (1) in terms of eigenvectors of operator that represents linear part of eq. (1). In [1] a set of
solenoidal solutions to eigenproblem of operator has been derived. Because these modes are obtained from an operator
that reflects the physics of this class of flow, the set of modes built this way is made of elements that reflect structures of the
actual flows. Therefore they are natural candidates to use as a base in a numerical spectral scheme. In particular, laminar
and turbulent Hartmann boundary layers that develop along the channel walls appear as built-in features. Moreover it can
be shown that to resolve the flow completely it is necessary to take into account all modes λ < λmax such as their number
is equal to Re2/Ha [1].
However in general the non linear terms cannot be expressed as an expansion in terms of the above modes, as they
span only the divergence free subspace of all functions fulfilling the boundary conditions. Therefore our base has to
be supplemented with additional elements spreading the irrotational subspace as well. We obtain them by solving the
eigenproblem with condition that velocity field is solenoidal replaced with condition∇× u = 0.

Non linear terms
The main difficulty of solving equation (1) in spectral space lies in calculating non linear terms. We use a pseudospectral
approach and calculate them in real space. Therefore we need a method to reconstruct a spectral coefficients gn of physical
vector fields known at the discrete set of points in space xi. This problem can be formulated as a set of linear equations
for unknown spectral components:

gnen(xi) = G(xi) i = 1 . . . N (2)

where en constitutes are base of eigenvectors, and G represents the decomposed vector field. As the coefficients in this set
of equations are constant during a single numerical run, it is worth performing LU decomposition of the corresponding
matrix at the beginning of calculations and later use it to efficiently find the spectral decompositions. Moreover it enables
us to save even more CPU time by omitting calculation of coefficients which wouldn’t be used in further calculations.
For example we are interested only in the gn coefficients corresponding to divergence free modes. Neglecting coefficients
corresponding to irrotational modes is an equivalent of performing projection representing by operator P in eq. (1).
The technique described above has the advantage that the obtained spectral decomposition reproduces exactly the physical
field on the given set of discretization points. Therefore momentum and energy are conserved by this procedure. However
the obtained spectral coefficients gn are different from the exact ones g̃n that would be the result of decomposition of the
same vector field in an infinite dimensional space spanned by all eigenvectors. The magnitude of the introduced error is
shown in fig. (1). It shows the absolute value of difference between gn and g̃n for two values of n in function of number
of modes used for decomposition Nz . Up to value Nz = 300 error is more or less constant as the used eigenmodes do



Figure 1. The absolute value of difference between gn and egn for two values of n = 4, 12 in function of grid size in z direction. The
decomposed field is (u · ∇)u, where u is a single eigenmode for Ha = 1000 normalized in such a way the its amplitude is 1.

not resolve the Hartmann layer. Above this value of Nz error introduced by spectral decomposition starts to drop with
exponential rate.

COMPUTATIONAL COST

The cost of pseudospectral code based on FFT technique is NxNyNz log(NxNyNz), where Ni denotes number of dis-
cretization points in direction i. In DNS calculationsNi should be of the order of Reynolds numberRe3/4 each. Moreover
to obtain physically meaningful results it is necessary to resolve the Hartmann layer in z direction. Therefore Nz should
be at least of the order of Ha. Therefore for large Harmann number calculations the computational cost of FFT based
code scales as∼ Re3/2Ha log(ReHa). For the problem considered in this contribution the dependence of the used eigen-
vectors on x and y is in the form of Fourier modes. Therefore the described in previous section spectral decomposition
has to be used only for dependence on z coordinate, while spectral decomposition in x − y can be performed with FFT.
The computational cost in this case scales as ∼ NxNyN

2
z . Using the estimation for the required number of modes from

[2, 3]: Nx,y ∼ Re1/2, Nz ∼ Re/Ha. However, based on fig. 1 we conclude that we still need to use sufficient number of
modes (∼ Ha) in z directions to calculate accurate spectral coefficients. However we need to calculate only Re2/Ha of
spectral coefficients, as the rest of them will be dissipated on the very short timescales and are not physically meaningful.
Therefore the total computational cost of the proposed scheme scales as ∼ Re2.

CONCLUSIONS

We argue that our new approach has a potential to significantly reduce the computational cost incurred by traditional
methods for the calculation of thin dissipative layers as its cost does not depend on Ha. Therefore it should allow for
performing calculations in physical regimes of very high magnetic field not currently accessible to numerical simulations.
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