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THE THREE-DIMENSIONALITIES OF WALL BOUNDED MHD TURBULENCE

Pothérat, Alban1 & Klein, Rico2
1 Applied Mathematics Research Centre, Coventry University, Coventry, UK

2Department of Thermo and Magnetohydrodynamics, Technische Universität Ilmenau , Ilmenau, Germany

Abstract Flows of electrically conducting fluids in an external magnetic field tend to become 2D. We show experimentally that in
channels flows normal to the field and electrically forced through one of the channel walls, the intensity of turbulent fluctuations scales
as Re when the flow is quasi-2D, Re2/3 when the flow is 3D but strong near both walls, and Re1/2 if it is mostly concentrated along
one wall only. We also partly confirm the theoretical prediction of [5] that structures of transversal wavelength k⊥ become quasi-2D
when they exceed a critical size k⊥ ∼ N

1/2
t , where the true interaction parameter Nt represents the ratio of momentum diffusion by

the Lorentz force to inertia for the large scales.

EXPERIMENTAL SETUP

The principle of our experiment [2] follows that of [4] in which a quasi-2D flow was produced by applying a constant
homogeneous magnetic field across a square, shallow container made of electrically insulating walls and filled with liquid
metal. The flow was termed "quasi-2D" to reflect its assumed invariance everywhere across the layer (i.e. along Bez),
except in Hartmann boundary layers that develop along the walls orthogonal to the externally applied magnetic field,
called Hartmann walls. Unlike this earlier experiment aimed at quasi-2D flows, our container is not shallow, but cubic with
inner edge L(= lz) = 0.1 m, so as to obtain 3D flows. The flow entrainment relies on the magnetohydrodynamic (MHD)
equivalent of the tornado mechanism: in the same way these are triggered by a vertical flow due to ocean evaporation,
columnar vortices of rotation axis ez are driven in MHD flows by injecting electric current locally at one Hartmann wall
only. 100 current injection electrodes are mounted flush at the bottom Hartmann wall only, arranged in a 10x10 square
lattice of step Li = 0.1L, alternately connected to either pole of a DC current generator. Hence, our base quasi-2D
flow, obtained for low current and high magnetic field, is a square array of 100 cylindrical, quasi-2D vortices of axis ez ,
each of size Li × L, that rotate in alternate directions. The flow is diagnosed by measuring the electric potential φ at
two sets of 121 points, covering two (3cm)2 squares respectively located on top and bottom Hartmann walls and aligned
exactly opposite each other along ez . Since the electric potential is known not to vary across the very thin Hartmann
layers, a quasi-2D flow would yield identical measurements on these two sets, while any difference between the two
would betray 3D behaviour. Furthermore, with the electric potential at a wall being proportional to the streamfunction
just outside the Hartmann layer [3], estimates for the bulk turbulent fluctuations of velocity near the bottom and top
Hartmann walls can be respectively obtained from electric potentials φb and φt measured at bottom and top walls as

U ′
b = B〈‖∇φb − 〈∇φb〉t‖2〉1/2t , and U ′

t = B〈‖∇φt − 〈∇φt〉t‖2〉1/2t . The flow is controlled by the injected current per
electrode I (measured non-dimensionally by a Reynolds numberRe0 = 2I/(πν(σρν)1/2)) and by the externally imposed
magnetic field intensity, measured by the Hartmann number Ha = LB(σ/(ρν))1/2. Measurements are performed in
established flows of increasingly high Re0 in the interval [0, 5.1× 105], for fixed values of Ha in [1092, 18220].

QUASI-TWO DIMENSIONALITY VS. INERTIAL THREE-DIMENSIONALITY DRIVEN BY INERTIA

The variations of Reynolds numbers Reb and Ret built on RMS of velocity fluctuations U ′
b and U ′

t are plotted in figure
1 against Re0. In the low Re0 range, the base vortex array is only just unstable and fluctuations are thus weak. In the
limit Re0 → ∞, by contrast, the flow becomes turbulent and Reb asymptotically scales as Reb ' 4λiHa

1/3Re
2/3
0 ,

where λi = Li/L. The scaling in λiHa1/3 reflects an increase in the intensity of velocity fluctuations relative to the
mean flow Ub (i.e U ′

p/Ub ∼ λiHa
1/3). For a given value of Re0, turbulent structures indeed become more and more 2D

when Ha is increased, and all the more so as they are thick-based (hence the positive exponent of λi). Energy transfer
from the main flow to them and through them to smaller scales is then progressively opposed by friction in the Hartmann
layer (dissipation of the order of −νU2

b /l
2
⊥Ha), rather than by the stronger Joule dissipation in the bulk of the flow

(∼ −νU2
b /l

2
⊥Ha

2). It can be shown that the scaling Re2/30 corresponds to a phenomenology where electric current is
being pulled in the core by finite 3D inertia, instead of travelling vertically from one Hartmann layer to the other, as
it does in quasi-2D flows. The Lorentz force associated to this current "leak" balances inertia there and causes three
dimensionality. In the absence of this effect, a quasi-2D flow would be expected yield a scaling of the form Reb ∼ Re0.
Fluctuations of velocity near the top wall show a similar behaviour with one important difference. In the limit of High
Ha, fluctuations follow practically the same law as near the bottom wall, with a small attenuation that reflects three
dimensionality. In the presence of three dimensionality, the flow is understandably stronger near the bottom wall, where
current is injected than near the opposite one. The most significant difference is visible at low Ha where the flow near the
top wall is much weaker than near the bottom wall and obeys a different scaling of the typeReb ' K(Ha)λiHa

1/3Re
1/2
0 .



At very low Ha, the current "leak" from the bottom Hartmann layer has become strong enough for the current in the core
to become of the same order as in the Hartmann layer itself. The flow is then entrained over the whole layer in which
the current passes and the scaling Reb ∼ Re1/20 is recovered by equating inertia and the Lorentz force over this layer [1].
The residual flow near the top wall is then entrained by viscous friction through the upper part of the fluid layer where
current injected at the bottom wall doesn’t penetrate. This layer becomes thicker when Ha increases and this explains
that K(Ha) decreases. In this regime, the top wall therefore has very little influence on the bulk.

SCALE DEPENDENCE OF THREE DIMENSIONALITY

The scale dependence of three dimensionality was evaluated by calculating correlations C(k⊥) between the time average
of spatial Fourier transforms from signals recorded synchronously at the bottom and top walls, along lines located exactly
opposite each other. Scaled graphs of these correlations and co-correlations 1−C(k⊥) against wavelength k⊥ (normalised
by L) are reported on figure 1 (bottom graphs). The scaling with Nt = Ha2/(λ2iRe0), which represents the ratio of
diffusion of momentum along the magnetic field lines by action of the Lorentz force to inertia is only approximate, but
all measurements collapse to show that a structure of size k⊥ becomes practically 2D when kc⊥ ' K2DN

3/5
t . This result

confirms, within experimental uncertainty, the theoretical prediction of [5], which would correspond to an exponent of
1/2. Roughly speaking, structures larger than kc⊥ are 2D while smaller ones are 3D.

Figure 1. Top Reb and Ret, measuring of the intensity of turbulent fluctuations in the vicinity of the wall where current injected
(left) and the opposite walls (right), vs a non dimensional measure of the current injected at the bottom wall. Bottom: correlation and
co-correlation of Fourier coefficients of∇φb and∇φt.
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