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Abstract We consider here the Lagrangian dissipation field, using DNS data with Reλ = 400. We first consider its statistical proper-
ties: it has a close to log-normal pdf, and it allows to directly test the Refined Similarity Hypothesis by considering scaling exponents
of the Lagrangian structure functions ζL(q) of the velocity field, and on the other hand the Lagrangian dissipation scaling exponents
ξL(q). We find that the Kolmogorov relation in Lagrangian frame, ζL(q) = q/2− ξL(q/2) is well verified. We then consider the log-
dissipation, and find that its covariance has a logarithmic decay, as expected for a multifractal cascade process. We propose to model
such series using a FARIMA truncated process, and discuss an auto-regressive representation, allowing to consider the predictability
properties of dissipation Lagrangian dynamics.

LAGRANGIAN MULTIFRACTAL FRAMEWORK FOR THE VELOCITY AND DISSIPATION

One of the characteristic features of fully developed turbulence is the intermittent nature of velocity fluctuations and of
the local dissipation. For Eulerian turbulence, intermittency provides corrections to Kolmogorov’s scaling law, which
are now well established. In the Lagrangian framework, an analogous approach can be followed. Let us note V (t) the
Lagrangian velocity along an element of fluid. As an analogy with Kolmogorov’s dimensional analysis in the Eulerian
framework, Landau proposed in his book in 1944 a 1/2 law for the temporal increments of the Lagrangian velocity
∆Vτ = |V (t + τ) − V (t)|. This was later generalized by Novikov, with a Lagrangian intermittency (multifractal)
framework for the velocity [1, 2, 3, 4, 5]: < ∆V qτ >∼ τ ζL(q). For a constant dissipation one obtains the expression
neglecting intermittency: ζL(q) = q/2. In this framework, in case of intermittency ζL(q) is nonlinear and concave, and
the non-intermittent function is valid only for q = 2: ζL(2) = 1. We note the Lagrangian dissipation ετ (dissipation
averaged during a time of τ ) which is assumed to result from a multiplicative cascade and possess the multifractal scaling:
< εqτ >∼ τ−ξL(q). The phenomenological relation of Kolmogorov and Landau gives in the line of the Eulerian Refined
Similarity Hypothesis (RSH) ∆Vτ ∼ ε1/2τ τ1/2, which can also be written for the scaling exponent functions:

ζL(q) =
q

2
− ξL

(q
2

)
(1)

We have here ξL(1) = 0 and if the intermittency exponent is noted µ = ξL(2) we have µ = 2− ζL(4).

0 50 100 150 200 250

t/τη 

0

2

4

6

8

10

ε(
t/
τ η

)

−8 −6 −4 −2 0 2 4 6

X/σ(X), X=log10(ε) 

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

p
d
f

Figure 1. Left: A portion of the Lagrangian dissipation. Right: the probability density function of log ε, showing that the lognormal fit
is rather good, except for large negative values.

DIRECT TEST OF THE REFINED SIMILARITY HYPOTHESIS USING SCALING EXPONENTS

Here we use Lagrangian velocity trajectories, with dissipation field computed along these trajectories, in an homogeneous
and isotropic turbulent flow DNS simulation with Rλ = 400: see [6] for the presentation of the database. Ensemble
statistics are computed over 200, 000 trajectories. A portion of the dissipation field along a trajectory is shown in Fig.1a.
The probability density function of log ε is shown in Fig.1b, and compared to a Gaussian fit. This shows that the log-
normal classical approximation is here rather justified, except for large negative values. Scaling exponents are estimated
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Figure 2. Left: comparison of the Lagrangian velocity structure functions scaling exponents ζL(q) with q/2−ξL(q/2): the good super-
position confirms the Refined Similarity Hypothesis in the Lagrangian frame, using directly scaling exponents. Right: the covariance
of g = log ε, in log-lin plot. For multifractal cascades, this is expected to be proportional to log τ , which is verified here.

separately for the velocity (to compute ζL(q)) and for the dissipation field using coarse graining (to compute ξL(q)). The
result is shown in Fig. 2a: the good superposition confirms the RSH in the Lagrangian frame, using directly scaling
exponents. The RSH was already verified in [6] and [7], but using different approaches, for selected moments orders, or
using correlations. Fig. 3a is the first direct check of this hypothesis for scaling exponents.

MODELLING OF THE LOG-DISSIPATION AND PREDICTABILITY STUDY

The covariance of g = log ε, where ε is obtained from a multifractal cascade, is proportional to log τ (see [8] and
references therein). This property is often taken as a validation of the multifractal cascade framework. Here this covariance
was computed from the DNS data, and shown in Fig.2b in log-lin plot. The good straight line which is obtained shows
that the Lagrangian dissipation can be considered as the result of a multifractal cascade. More precisely, the covariance
is expected to behave as −µ2 log τ , and the coefficient found here gives µ ' 0.37, which is slightly larger than the value
obtained from the value of ζL(4), which is µ ' 0.3.
In [8], a discrete lognormal process is introduced to sequentially generate a lognormal multifractal time series. It is written
as a truncated log-FARIMA discrete process, or a truncated FARIMA process for g. It was shown that such process can
be also written in an autoregressive way, of the form:

ht = δ +
∑
k≤0

dkg(t− k) (2)

where ht is a noise term, δ is a constant and dk are parameters which are known recursively. Such auto-regressive
expression is useful for prediction purpose since it shows that, when the past values of g are known, the value of g(t)
is provided with the help of only one noise term ht. Introducing such modelling for the logarithm of the Lagrangian
dissipation field, one can express log ε(t) using past values of ε and only one noise term. This autoregressive expression
fully exploits the long-range correlations of the intermittent dissipation field. We will show, using the DNS database, the
predictability strength of such modelling.
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